
Thermoptim reference manual Volume 3 1

Thermoptim reference manual Volume 3
1 Foreword

Thermoptim documentation
2 Extension system for Thermoptim by adding external classes

2.1 Software implementation
2.2 Programming issues
2.3 Using the external classes
2.4 Three categories of interface methods
2.5 Using external components

2.5.1 Viewing the available external classes
2.5.2 Representation of an external component in the diagram editor
2.5.3 Loading an external class
2.5.4 Thermocouplers
2.5.5 External Nodes
2.5.6 Miscellaneous comments

2.6 Representation of real fluid mixtures in Thermoptim
2.6.1 Link between Thermoptim and thermodynamic properties servers
2.6.2 Creating an external mixture

3 Programming external components
3.1 External Substances

3.1.1 Construction of pure external substances
3.1.2 Calculations on the pure external substances
3.1.3 Constructing external mixtures
3.1.4 Instantiation from external classes
3.1.5 Coupling class with the properties server TEP ThermoSoft
3.1.6 Thermodynamic charts of external mixtures

3.2 External Processes
3.2.1 Construction
3.2.3 Moist gas calculations
3.2.4 Calculation of exergy balances
3.2.5 Managing Energy Types
3.2.5 Access to other elements of the simulator
3.2.6 Saving and loading the parameters of the model

3.3 External nodes
3.3.1 Construction
3.3.2 Updating and calculating a node
3.3.3 Managing energy types
3.3.4 Saving and loading the parameters of the model

3.4 Access to instances of external nodes and processes
3.5 External driving of Thermoptim

3.5.1 Facilitating the development of external classes
3.5.2 Providing access to the unprotected libraries
3.5.3 Operation in client-server mode

3.6 Integrating external classes in the library extUser2.zip
3.6.1 Using the external class manager
3.6.2 Using a standard compressor
3.6.3 Modifying the classpath for adding java libraries
3.6.4 Viewing external classes

4 External class development environment
4.1 Presentation of the workspace
4.2 Installing Eclipse
4.3 Emulating Thermoptim from Eclipse

Appendix 1 : Thermoptim methods which can be called by external classes
Package rg.corps

In Corps
In CorpsExt

Thermoptim reference manual Volume 3 2

© R. GICQUEL 1997 - 2022. All Rights Reserved. This document may not be reproduced in part nor in whole without the author’s
express written consent, except for the licensee’s personal use and solely in accordance with the contractual terms indicated in the
software license agreement.

Information in this document is subject to change without notice and does not represent a commitment on the part of the author.

1 Foreword
Thermoptim documentation
Thermoptim documentation is comprised of several complementary parts:

a short documentation named Quick Reference available through menu Help: it gives access to tab frames introducing the main
concepts used

a printable documentation, mainly as pdf files

on line e-learning modules with sound tracks named Diapason

guided explorations of Thermoptim models

The documentation available is presented in Volumes 1 and 2 of the reference manual.

This is the third volume. It is dedicated to the design of external classes. After a quick introduction to the extension mechanism that
has been adopted, it explains how to use and program external classes, and introduces a freely distributed development
environment.

2 Extension system for Thermoptim by adding external classes

Package rg.thopt
In Projet
In PilotFrame
In ComposantExt
In TransfoExterne
In DividerExterne
In MixerExterne
In ComprExt

Annex 2 : Thermoptim methods code
Method getProperties() of Projet
Method updatePoint() of Projet
Method getSubstProperties() of Corps
Method getExternalClassInstances() of Projet
Method updateProcess() of Projet
Method updateNode() of Projet
Method updateHX() of Projet
Method updateSetPressure() of Projet
Method getSubstProperties() of Corps
Method getExternalClassInstances() of Projet
Method setupChart() of Projet

Annex 3 : utility methods of class Util
Annex 4 : TEP ThermoSoft - Java / Delphi Interface – Application to Thermoptim
Annex 5 : UML Diagrams of external classes

Substance class diagram
External component class diagram

Thermoptim reference manual Volume 3 3

One great advantage of Thermoptim is that its graphic environment can be used to visually build models for a large number of
energy systems, from the simplest refrigerator to complex integrated gasification combined cycle electric power plants using several
hundred elements.

Not only does this greatly simplify the modeling process and facilitate subsequent use and maintenance of the model, but it also
makes the models more reliable. The connections between the different elements are made automatically, thus ensuring
consistency.

Through version 1.4, only the components available in the Thermoptim primitive type set could be assembled in this manner, which
limited the potential of the software. A number of users wished to be able to define their own elements and/or their own substances.

Thermoptim interface with external classes (Java code elements) provides the solution and facilitates the interoperability of the
software with the outside world, especially with other applications developed using Java.

The benefits are two-fold:

Thermoptim reference manual Volume 3 4

create Thermoptim extensions from common primitive type set, by adding external modules that define the elements that
automatically appear on the screens in a seamless fashion. Thus users can add their own substances or components not
available in the basic set.

drive Thermoptim from another application, either to guide a user (smart tutorial) or to check the code (driver or regulation,
access to thermodynamic libraries).

The previous and opposite figures show how the external substances are added to Thermoptim list of substances, and then replace
an internal substance on the point screen. They are just as easy to use as if they were part of the software.

The figure opposite shows how an external component representing a solar collector appears in the diagram editor, and the figure
below shows the screen of the corresponding process, composed partly of Thermoptim internal code and partly of external code
(lower third on the right).

2.1 Software implementation

Practically speaking, adding a new external process is quite easy. Simply create a specific class, which inherits from the abstract
parent class extThopt.ExtProcess. The interaction with Thermoptim is ensured on two levels:

by general methods for performing the required calculations;

by a JPanel that is built in to the external process screen. Thus, the class designer can create his own graphic interface, which is
then inserted into the Thermoptim screen.

2.2 Programming issues
To protect the Thermoptim code, its classes are “obfuscated”, i.e. all of its elements are renamed, making it extremely difficult to
decompile. However, this makes it impossible to access the Thermoptim content from the outside. The solution is not to obfuscate
the methods that we want to be accessible. Thus there we must find a compromise between accessibility and code protection, which

Thermoptim reference manual Volume 3 5

means providing as few accesses as possible. For the moment, only two Thermoptim packages out of five are partially accessible:
rg.thopt and rg.corps. The first contains the simulator classes and the second the substance classes.

The solution consists of adding a non-obfuscated package (extThopt), in which there are classes (for example
extThopt.CorpsExterne), recognized by Thermoptim, which are subclasses of Thermoptim classes, through interface classes
(extThopt.CorpsExterne is a subclass of rg.corps.CorpsExt, which in turn is a subclass of rg.corps.Corps). These classes have
methods that establish the correspondence with their obfuscated internal equivalent. We recommend that you refer to the API of the
package extThopt to learn about the syntax and functions of all of the methods available. This API is part of the development
environment of the external classes available (in the folder api_extThopt).

2.3 Using the external classes
In version 1.5, there are four types of external classes: substances, processes, dividers, and external nodes. The same principle
applies to all: in the external package (extThopt), an input class is simply an extension of one of the Thermoptim classes
(CorpsExterne for substances, TransfExterne for processes, etc.). All of the external overloaded Thermoptim methods are located in
this class. ExtThopt simply acts as the input point in its package. Its role is to instantiate the various classes representing the
elements added to Thermoptim and to interface with the software using overloaded methods.

External classes inherit from an abstract parent class. For example, ExtSubstance for substances, ExtProcess for components. In
practice, the interaction with Thermoptim is ensured at one or two levels, depending:

parent classes define all of the general methods useful for performing the required calculations

with the exception of ExtSubstance, they also define a JPanel that is incorporated into the screen of the external component. In
this way, the designer can create his own graphic interface, which then appears on the Thermoptim screen. The designer can
define his own graphic elements (buttons, fields, labels, etc.) and process specific actions in his methods. For the components,
two methods, saveCompParameters() and readCompParameters(String ligne_data), save the parameter settings in the
Thermoptim project file, for use when the project is loaded.

In short, external classes, such as CorpsExterne or TransfExterne, inherit directly from Thermoptim classes and ensure the interface
with the software. They call abstract classes, such as ExtSubstance or ExtProcess, whose subclasses may be freely designed by
the users via interface methods and JPanel.

The diagram below illustrates the structure used for external processes. For substances, the diagram is the same, but simpler. Since
there is no graphic interface, there is no need for the right-hand part of the diagram. People familiar with UML notation will find the
class diagrams for external substances and processes in Appendix 5.

The top part of the diagram corresponds to classes present in Thermoptim basic set, and the lower part corresponds to the extThopt
package that can be modified by the external class designer. SourceSink is a default implementation of ComponentType to be able
to instantiate a TransfoExterne, even in the absence of external classes of this type, and SolarCollector and LiBrAbsorption are
examples of external classes. The dotted blue and red lines symbolize the relays of the parts of the code relating to the calculations
and the graphic interface, made from TransfoExterne to the other classes, either internal classes (SourceSink) or external classes
(subclasses of ExtProcess).

Thermoptim reference manual Volume 3 6

Thermoptim selects directly from the external classes as follows: When it is launched, the software analyzes the archives
extThopt2.zip and extUser2.zip, which contain all of the external classes. It finds all of the classes added by default and by the users
and sorts them by parent class, loads them in the various types of arrays, and adds the external elements to its own lists so that
they are seamlessly accessible. Subsequently, if one of these elements is selected, Thermoptim sends its class to the appropriate
constructor, which instantiates it. The line External Class Viewer in the Special menu shows the external classes available (see
section 3.6).

Once an external component is instantiated, it is possible to change it by double-clicking on its type as it appears on the screen.

For now, there is no consistency test on the class names and element types, but this feature will be added shortly. For the
development of external classes, an emulation system makes it possible to launch Thermoptim from an external application, and to
dynamically load the classes under development, providing access to the debugging tools in the usual working environment (see
section 6).

Moreover, the package extThopt includes a Util class that provides a number of utility methods for formatting numbers, reading them
onscreen, saving and reading values, finding roots using the bisection method, etc. (see Appendix 3).

2.4 Three categories of interface methods
The classes used in Thermoptim, CorpsExterne, TransfExterne and the other, define the interface methods, which fall into three
additional categories:

Internal Thermoptim methods designed to be obfuscated

Non-obfuscated internal methods that are directly used by the external classes: These methods are used to execute the
Thermoptim methods with external parameter settings, and must not be overloaded. Their signature must be strictly
respected: in particular, the structure of the Vectors of Objects used as arguments must correspond exactly to what Thermoptim
expects, or a ClassCastException will be generated.

External methods corresponding to Thermoptim obfuscated methods: These methods are used to execute the external methods
from within Thermoptim, and must be overloaded.

The non-obfuscated methods falling into the last two categories are listed in Appendix 1, for all of the accessible classes. For more
information, please see the html documentation for these classes provided in the folder api_Thermoptim.

Thermoptim reference manual Volume 3 7

2.5 Using external components

2.5.1 Viewing the available external classes
To help you use and manage the external classes, the line External Class Viewer from the Special menu displays all of the external
classes available. They are sorted by type (substances, processes, mixers, dividers, drivers) with a short description of the class
selected and where it comes from (extThopt2.zip and extUser2.zip archives as well as classes under development).

This screen can be consulted while you are developing your model.

2.5.2 Representation of an external component in the diagram editor
Specific icons were added to represent the external components (

for processes,

for mixers, and

for dividers). The external component is then selected when the simulator is updated from the diagram as indicated below.

2.5.3 Loading an external class

Thermoptim reference manual Volume 3 8

To load an external process (for an external node, the process is the same), you can either:

from the simulator screen click on the column header of the process array, then choose External and finally select the type of
external process you want from the list;

Or, from the diagram editor, build the external component graphically then update the simulator from the diagram. In the case of
an external process, by default it is a “heat source / sink” type, as shown in the screen opposite.

Once this default process is created, double click on the label “source / sink” to access the list of all external processes available.
Choose the one you want and it will be loaded.

2.5.4 Thermocouplers
The thermocoupler system completes the heat exchanger system by allowing components other than exchange processes to
connect to one or more exchange processes to represent a thermal coupling. This system does not encompass the exchanger

Thermoptim reference manual Volume 3 9

system: two exchange processes cannot be connected by a thermocoupler.

This system has a number of benefits, because it can be used to represent many thermocouplers that do not constitute a heat
exchange in the traditional sense, like for example cooling the walls of the combustion chamber of a reciprocating engine, cooled
compression, and above all supply or removal of heat from the multi-functional external components.

The figure above is an illustration of this: An absorption refrigeration cycle, whose absorption-desorption system is defined and
integrated in an external process, is supplied with the steam that exits the evaporator then enters the condenser. This cycle involves
the mixture LiBr-H2O, whose properties are modeled either directly in the external process, or in an external substance, and
requires high temperature heat supply to the desorber and medium temperature heat removal from the absorber. The representation
of these thermocouplers is possible thanks to the thermocoupler system: the external process calculates the thermal energies that
must be exchanged, and the thermocoupler recalculates the corresponding “exchange” process, which updates its downstream
point.

The types of thermocouplers used by an external component appear in the lower right hand corner of the screen. Double click on
one of the types to open the screen of the corresponding thermocoupler.

Given that thermocouplers are a type of heat exchanger, it is valuable to define them by values such as effectiveness ε, UA, NTU or
LMTD, that can be calculated using similar equations. The component sends to each of its thermocouplers the equivalent values for
flow rates, inlet and outlet temperature and thermal energy transferred, which they must take into account in their calculations.
Specific methods are provided in the external class code and are not user-modifiable.

However, there are limits to the similarities with exchangers: for example, temperature crossovers unacceptable in an exchanger
may occur in a thermocoupler, leading to absurd values.

So it is best to transmit values that are unlikely to lead to this type of situation. One possible solution is to assume that the
thermocoupler is isothermal for calculations of characteristics that are similar to exchanger characteristics. For example, a
combustion chamber may be assumed to be at mean temperature between its upstream and downstream points when calculating
cooling. This assumption is not absurd and may prevent a temperature crossover between the cooling fluid and the gases that cross
the component.

Thermoptim reference manual Volume 3 10

In the case of the absorption machine presented above, we assumed that the absorber and desorber were isothermal.

Both lead to the screens below. If we had not taken the temperature of the absorber as a reference for the exchange calculations,
keeping the temperatures of the steam entering and exiting the external process, we would have ended up with a temperature
crossover.

For external processes that accept several thermocouplers and for external nodes, the potential complexity of the calculations
prevents the exchange process from driving the thermocoupler. Its load is always set by the external component. This is why there
are fewer options for calculating a thermocoupler than for a heat exchanger: The user can only choose between calculating the
outlet temperature of the exchange process (at a given flow rate) and the flow rate, when the temperature is known.

Note that on the thermocoupler screen, the external component fluid can be selected as a pinch fluid and a minimum pinch value
can be entered (see optimization method, volume 1).

2.5.5 External Nodes
The nodes of Thermoptim basic set are extremely simple components used to complete the description of the fluid circuits. They are
always adiabatic, and they ensure the conservation of the mass flow rate and enthalpy

Thermoptim reference manual Volume 3 11

However, there is one somewhat special component, considered as a process, but which is in fact a node in most cases:
combustion, which receives an oxidizer and a fuel, and from which burned gases exit.

In the LiBr-H2O absorption example, a number of energy systems are involved, as well as components of varying complexity, which
can have a number of input and outlet fluids, after various internal calculations, with or without thermocoupling with external heat
sources.

External nodes allow a user to define these components. Only external mixers and dividers are defined: no component
simultaneously performs both functions (receiving and emitting several fluids), but you need only couple an external mixer with an
external diffuser to do so.

In many respects, we encounter the same problems in implementing these external nodes as with thermocouplers: the potential
complexity of the calculations to be made in the node makes it necessary for the node to take over and control both the main vein
and the branches, since no default calculation is possible.

The verification and consistency problems are even more critical than for thermocouplers: only the node designer knows which
processes it must be connected to in inlet and outlet. The user must refer to the documentation of the class to know how to use it.

The figure above shows the diagram of a desorber for an absorption machine using the LiBr-H2O mixture whose properties must in
this case be provided by an external substance.

Thermoptim reference manual Volume 3 12

The external node screen is shown opposite. As with external processes, it contains a general part defined in the Thermoptim basic
set, completed by a part defined by the user (here the lower left zone).

In the model shown here, the only parameter defined in the node is the temperature of the desorber. The properties of the rich
solution (mass fraction and flow rate) and the state of the refrigerant are obtained from their respective processes.

The node calculates the flow rates of the refrigerant and the poor solution, its state, and heat supply required.

The thermocoupler then calculates the final state of the steam used.

Before each recalculation, the node checks that its structure is correct and loads the values that it needs to be calculated. Then it
updates the thermocoupler that can in turn be recalculated. In this example, we assumed that the desorber was isothermal, and we
took the flow rate of the poor solution as the reference flow rate.

2.5.6 Miscellaneous comments
You may have noticed that the screens of the external processes represented here are composed partly of Thermoptim internal
code and partly of external code (lower right section in the processes, lower left in the nodes.). This is because the character strings
used in the external components have not been “internationalized” the way the Thermoptim basic set has.

But this does not affect their use in any way. However, you can see that the number display has not been internationalized either, so
the decimal separator is not the same: it is a period and not a comma. Of course, this can be modified, but it has not yet been done.
This means that the figures must be entered with a point in the part defined in the external component, and with a comma in the rest
of the screen. It is important to pay close attention to this issue, otherwise number formatting errors will be detected by Java.

2.6 Representation of real fluid mixtures in Thermoptim
Until 2005, the only Thermoptim substances whose composition could be defined by the user were compound gases. It was
impossible to represent real fluid mixtures. The external substance system was reworked to be able to do so, via the introduction of
a new type of substance, called “external mixture”, and substances formerly known as external substances were renamed “pure
external substances”.

An external mixture is made from a system, i.e. from a given set of pure substances, and its composition is specified in a new
editor.

The distinctive characteristic of these external mixtures is that they can be used to generate a set of substances from the same
system of pure substances. In this way, they are similar to compound gases. The difference is that the interactions among real
fluids are much more complex than among ideal gases, so you must specify not only the pure substances used, but also their
models, mixture rules and a number of additional parameters.

Thermoptim reference manual Volume 3 13

2.6.1 Link between Thermoptim and thermodynamic properties servers
The system makes it possible not only to define external mixtures by completely writing their external classes, but also to calculate
those using thermodynamic properties servers (TPS), software packages that have specialized libraries, such as TEP
ThermoSoft developed by the Centre Energétique et Procédés of Ecole des Mines de Paris and Simulis Thermodynamics made by
ProSim.

This link is a very valuable extension of Thermoptim, since it means that many new fluids can be used in the software, with
extremely accurate models. The trade-off is that it is somewhat complex and especially, calculation times can be long.

2.6.2 Creating an external mixture

The point calculation screen has been modified slightly: an “external mixture” option has been added.

To create a new external mixture, select this option then enter a new substance name and press Enter.

The external mixture editor can then be opened by clicking on “display”. By default, the external mixture created is of the type "LiBr-
H2O external mixture" whose class is presented as an example in the programming documentation. If this is the desired substance,
enter its composition, then click “Save”. The expected composition type (molar or mass fraction) is displayed above the component
names column, and corresponds to the first column of figures from the left.

In the title of the external mixture editor the following items appear:

the mixture name (here LiBrH2O)

the corresponding external class identifier (here LiBr-H2O external mixture)

the name of the software used (either a TPS, or as in this example (rg) a family of external classes).

the system used (here LiBr-H2O)

This information is used to characterize the mixture by referring to the documentation. The same TPS may propose several
systems, and may be used in several external classes.

From the pop-up menu located in the lower right of the editor screen you can display all of the systems available. If the one
proposed by default is not the one you want, select one from the list and click “load the mixture”. The editor is then updated, and you
can enter the composition and click “save”.

In a Thermoptim project file (.prj), the data for external mixtures are saved in the same way as for compound gases.

COMPOUND SUBSTANCES 2

Name of gas / Components molar fraction mass fraction

gaz_brulés 5

CO2 0.0309766336 0.0477375785

Thermoptim reference manual Volume 3 14

H2O 0.0619532671 0.0390824699

O2 0.14154164 0.158596897

N2 0.756807249 0.74238276

Ar 0.0087212103 0.0122002945

LiBrH2O 2 extMixture=true classe=LiBr-H2O external mixture syst=LiBr-H2O

lithium bromide 0.35 0

water 0.65 0

extMixture=true indicates that it is an external mixture, and the rest of the line specifies the class and the system selected. The next
lines give the molar or mass compositions (for the time being, for a given mixture, the input can be done only in the manner selected
by the designer of the external class, either in molar fractions, or in mass fractions).

Note that the order in which the components appears is not random: it is defined in the corresponding external class. Consequently,
if you edit a project file manually, you must keep the same order for the system components.

The substance selection screen has been modified to distinguish between two categories of external substances. In this example,
the three external mixtures on the bottom of the list correspond to different compositions of the same system.

Once the external mixture has been defined or loaded from the substance selection screen, its composition can be modified in the
editor, and as we saw above, the system can also be changed by selecting one from the available libraries (pop-up menu on the
lower right).

3 Programming external components
This section presents the basic notions needed to program external components, with some illustrations taken from the examples
provided with the development environment. Once again, however, we would like to stress how important it is to properly prepare
the documentation of your classes. The documentation must include at least two sections: the programming file and the user
documentation. A poorly documented class will be difficult to use or modify, and the easiest time to document an external class is
when it is created. Unfortunately experience has shown that this is only rarely the case…

Since the external class represents a component model that has a physical sense, it is important to write a note describing the
model, both for the programming file and the user documentation. The code itself must include enough comments to make the links
to the model as clear as possible (in particular it is best if the notations are uniform). Finally, the user documentation must
specifically indicate the component constraints and requirements, with a thorough description of which inlet and outlet fluids can be

Thermoptim reference manual Volume 3 15

connected to it, (name, nature, etc.) and how the thermocouplers, if any, must be constructed. The method getClassDescription ()
can be used to enter a brief description of the class, which can be consulted from a special Thermoptim screen. We recommend
including the documentation references and the main constraints and requirements of the class in this method.

Practically speaking, you can proceed as follows: gather the following elements in an archive that has the same name as the class:
the java code of the component, its class file, a modeling note, instructions for use with a short example of how it is used, and the
.prj and .dia files for the example. A model library containing all of these archives can easily be created and updated.

3.1 External Substances

3.1.1 Construction of pure external substances
The structure of external classes was defined above. The class extThopt.CorpsExterne inherits from the rg.corps.CorpsExt class of
Thermoptim and performs the interface, relaying the calculations to an abstract class (extThopt.ExtSubstance). This class defines
the basic methods and is subclassed by the different classes introduced (for example extThopt.GlycolWater25,
extThopt.GlycolWater40, etc.).é We recommend that you refer to the API of extThopt.CorpsExterne and extThopt.ExtSubstance to
learn about the syntax and functions of all of the methods available. This API is part of the development environment of the external
classes available.

Since Thermoptim knows only the external interface class extThopt.CorpsExterne and the abstract class extThopt.ExtSubstance,
the instantiations can use only these two classes. The synchronization between the internal and external methods must be done
carefully, but it is the only way to make sure that the classes used are working properly.

We will begin by explaining the construction procedure implemented in Thermoptim, then we will show how to create a new external
class, by subclassing extThopt.ExtSubstance.

3.1.1.1 Construction of a pure external substance in Thermoptim

The construction procedure is as follows:

1. the user selects an external substance from the list, which shows the index in the arrays of external classes loaded in
Thermoptim.

2. you load this class, which you transtype in ExtSubstance, and encapsulate in an Object.

Class c=(Class)rg.util.Util.substClasses[i];//load the class of the external substance

Constructor ct=c.getConstructor(null);//carefully instantiate it with its constructor without an argument.

extThopt.ExtSubstance ec=(extThopt.ExtSubstance)ct.newInstance(null);

Object ob=ec;//encapsulate it in an Object (otherwise the argument will not go through!)

corps=(Corps)new CorpsExterne(ob);//instantiate the external substance

which is done by the following constructor:

public CorpsExterne(Object obj){

subst=(ExtSubstance)obj;

setNom(subst.getType());

setComment(subst.chemForm);

initCorpsExt(subst.M, subst.PC, subst.TC, subst.VC, subst.Tmini, subst.Tmaxi,

subst.Pmini, subst.Pmaxi, subst.typeCorps);

}

3.1.1.2 Creating a pure external substance

To create an external substance, simply subclass extThopt.ExtSubstance. Let us take the example of the class DowThermA.

The constructor is as follows:

public DowThermA (){

super();

Thermoptim reference manual Volume 3 16

type=getType();//type of substance

M=166; PC=31.34; TC=752.15; //initializations (molar mass, critical pressure and temperatures)

Tmini=293.15; Tmaxi=523.15; //minimum and maximum temperatures of the substance definition

chemForm="(C6H5)2O (73.5% vol), (C6H5)2 (26.5% vol)"; //chemical composition of the substance

}

The method getType() sends the type of substance as it appears on the Thermoptim screens:

public String getType(){

return "Dowtherm A";

}

The method getClassDescription () can be used to enter a brief description of the class, which will appear in the external class
viewer (see section 3.6). Provide a short explanation of the model, and if possible cross-reference to more detailed documentation.

public String getClassDescription(){

return "data from FLUIDFILE software by Dow Chemical\n\nauthor : R. Gicquel April 2003";

}

The methods for calculating the properties of the substance are presented later in the manual.

3.1.2 Calculations on the pure external substances
3.1.2.1 Principles of correspondence

For the calculations, the arguments are passed by the non-obfuscated methods. Please see Appendix 1 for details on existing
methods.

For example, the enthalpy equation is inverted to solve for T in extThopt.CorpsExterne by:

public double getT_from_hP(double hv,double P){

return subst.getT_from_hP(hv,P);

}

The interface class rg.corps.CorpsExt ensures the correspondence between inv_hp_T (obfuscated) and getT_from_hP (non-
obfuscated) :

public double inv_hp_T(double hv,double P){

return getT_from_hP(hv, P);

}

Thus, any time inv_hp_T by is called by a method internal to Thermoptim for an external substance, the call is relayed to
getT_from_hP by rg.corps.CorpsExt.

Going in the other direction, rg.corps.Corps or rg.corps.CorpsExt contains the following method:

public double getT_from_hP(double hv,double P){

return inv_hp_T(hv, P);

}

When getT_from_hP is called by an external method for an internal substance, the call is relayed to inv_hp_T.

3.1.2.2 Examples of implementation

The class DowThermA defines a heat transfer fluid used in the exchangers. The substance remains in the liquid state at all times,
and the calculations are simple: For example enthalpy, which is a function only of temperature (and its inversion).

public double calcH (double T, double P,double x) {

double a=0.00281914712153519,b=1.51937611940298;

double TT=T-273.15;

Thermoptim reference manual Volume 3 17

return b*TT+a/2.*TT*TT;

}

because h is given by a second degree polynomial to solve for T, its inversion is explicit:

public double getT_from_hP(double $hv,double $P){

double a=0.00281914712153519,b=1.51937611940298;

double c=-$hv;

a=a/2.;

double delta=b*b-4.*a*c;

double TT = (-b+Math.pow(delta,0.5))/2./a;

return TT+273.15;

}

The calculations here are very simple. If we were dealing with a condensable vapor, they would be much more complex. The class
LiBrH2Omixture is a somewhat more complicated example.

3.1.3 Constructing external mixtures
3.1.3.1 Special issues

Like pure external substances, external mixtures are extThopt. ExtSubstance type, even if their calculations are performed in the
TPS. To differentiate them, external mixtures must implement the interface extThopt.ExternalMixture, which specifies which methods
they must define (see below).

The names of the pure external substances are listed on the substance selection screen, where they are used to instantiate classes.

For external mixtures, things are much more complex, because the same external class can define several systems, and each
system generates as many compositions as the user wants, except of course if you are dealing with a pure substance, in which
case the molar fraction and the mass fraction are both 1. Each external class defines all of the systems it proposes, and these
systems cannot be modified by the user from within Thermoptim.

The class rg.corps.ExtMixture is used to instantiate the mixtures. It has a Substance called refExternalSubstance, which
corresponds to the external class where the calculations are done, and with which it exchanges the system name and the selected
compositions, using the method CorpsExterne (which must not be obfuscated, of course):

public void CalcPropCorps (double T, double p, double x, String systType, double[] fract_mol) {

//we start by updating the system composition

subst.updateComp(systType, fract_mol);

double U=20., H=10., S=0.5, V=0.01, Cv=0., Xh=0.;

if((T>=subst.Tmini)&&(T<=subst.Tmaxi)){

//we call the method CalcPropCorps of the external mixture

double[]val=subst.CalcPropCorps (T, p, x);

//we load the values calculated

H=val[0];

V=val[1];

Cv=val[2];

x=val[3];

U=val[4];

S=val[5];

}

else{

Thermoptim reference manual Volume 3 18

String message=resIntTh_fr.getString("mess_116");

JOptionPane.showMessageDialog(new JFrame(),message);

}

//update of the substance variables (hidden)

setState(p, T, x,//in arguments

U, H, S, V, Cv, Xh);//to be recalculated

}

This method relays the system selected (systType) and its molar or mass fraction (fract_mol) to the external substance (subst), then
calculates the point.

In order to return the value of the vapor quality or the composition at liquid-vapor equilibrium, we defined the method getQuality(),
which returns an array of doubles corresponding to the variable X of ExtSubstance, which must be correctly updated when inversion
calculations are performed.

Any external mixture must return three methods defined in the interface extThopt.ExternalMixture, used to initialize ExtMixture when
it is instantiated:

public String getSoftware(), which defines the thermodynamic properties server used

public Vector getMixtures(), which defines the names of the different systems, and the substances they contain

public boolean isMolarFraction(), which is true if the composition must be entered in molar variables, and otherwise it is false.

The structure of the Vector vMixtures is as follows:

String[] system={"lithium bromide","water"};

vMixtures= new Vector();

Object[]obj=new Object[2];

obj[0]="LiBr-H2O";

obj[1]= system;

vMixtures.addElement(obj);

Note that isMolarFraction() serves only to define the mixture editor display: In all cases the composition transits via the array
fract_mol.

3.1.3.2 Critical or pseudo-critical values: getCriticalParameters() method

Critical values of a mixture depend on its composition and cannot be initialized once and for all. To transfer them in Thermoptim the
external mixture uses getCriticalParameters(), whose implementation for CTPLib (actually pseudo-critical values) is given by:

public double [] getCriticalParameters () {

double [] props = new double [4];

if (nbComponents == 1) {

props [0] = compProp [0] .TC;

props [1] = compProp [0] .PC / 1.e5;

props [2] = compProp [0] .VC;

props [3] = compProp [0] .M;

}dropoff window

else {

props [0] = CalcTcMix ();

props [1] = CalcPcMix () / 1.e5;

props [2] = CalcVcMix ();

props [3] = CalcMMix ();

Thermoptim reference manual Volume 3 19

}dropoff window

return props;

}

The values are transferred when the substance is calculated.

For an external mixture, the calculation of the state of the substance from Thermoptim is relayed to void
rg.corps.ExtMixture.etat_complet (double TT, double pp, double x), which calculates from the class by:

refExternalSubstance.CalcPropCorps (TT, p, x, fractType, systType, fract_mol); // modRG 23/01

and then retrieves the values v = refExternalSubstance.getSubstProperties Vector ();

and updates all values, including the critical coordinates

When calculating refExternalSubstance.CalcPropCorps, critical values are determined by:

double [] getCriticalParameters prop = ();

subst.TC prop = [0];

subst.PC prop = [1];

subst.VC = prop [2];

subst.M = prop [3];

getCriticalParameters()returns the correct values.

3.1.3.3 Files associated with external mixtures

As in the case of compound gases, the list of external mixtures is saved in a file called "mel_ext.txt", which is updated each time a
new mixture is created, and is used to initialize the substance selection screen.

external mixtures file

CO2_TEP TEPThermoSoft mixtures CO2 CO2;1.0;0.0

liqu pauvre TEPThermoSoft mixtures NH3-H2O ammonia;0.25;0.0 water;0.75;0.0

vap riche TEPThermoSoft mixtures NH3-H2O ammonia;0.75;0.0 water;0.25;0.0

mel pauvre TEPThermoSoft mixtures NH3-H2O ammonia;0.1;0.0 water;0.9;0.0

LiBrH2O LiBr-H2O external mixture LiBr-H2O lithium bromide;0.35;0.0 water;0.65;0.0

Fin

Fin

3.1.3.3 Example of external mixture: the system LiBr-H2O

The system provides a simple example of how to define an external mixture. Later in the manual we will give a more complex
example on linking up with the Thermosoft TEP thermodynamic properties server, taking into account the characteristics of the
ThermoSoft database. Another example is the coupling with the TEP Lib SPT which is detailed on the Thermoptim UNIT portal. As
the latter is written in Java, the coupling is particularly simple.

Warning: this system is modeled in Thermoptim external classes in two ways: by the H2OLiBrMixture class as an external mixture,
and by the LiBrH2OMixture class as a simple external substance. In the latter case, the mass fraction of LiBr X in the mixture uses
the field usually devoted to the quality x.

In machines using the LiBr-H2O mixture, the difference in the vapor pressure between the solvent (LiBr) and the solute (H2O) is
such that we can set aside the mass fraction of the solvent in the vapor phase, which simplifies the calculations. Note that it is
common practice to define the parameters of the diagram of the LiBr-H2O mixture as a function of the mass concentration in solvent
(LiBr) and not in solute. Since water is likely to crystallize at low temperatures, the mixture crystallization curve is often shown on the
diagram, corresponding to a lower operating limit for the machines.

For this pair, the ASHRAE proposes equations (1) and (2), set up by generalizing the refrigerant (water) saturation pressure law to
the mixture, in which the water temperature t' (°C) is replaced by a linear function of the solution temperature t (°C). P, expressed
based on a decimal logarithm, is the pressure in kPa, and X is the mass fraction of the mixture in LiBr. These equations are valid in
the following value intervals: -15 < t' < 110 °C, 5 < t < 175 °C, 45 < X < 70 %.

https://direns.mines-paristech.fr/Sites/Thopt/en/co/TEPLib.html

Thermoptim reference manual Volume 3 20

ASHRAE, Fundamentals Handbook (SI), Thermophysical properties of refrigerants, 2001

Table 1 coefficients of equations 1 and 2

ASHRAE 0 1 2 3 4

A0 -2.00755 B0 124.937 C 7.05

A1 0.16976 B1 -7.71649 D -1596.49

A2 -0.00313 B2 0.152286 E -104095.5

A3 0.0000198 B3 -0.000795

The constructor initializes the validity limits of the class and the Vector vMixtures, which in this case includes just one system:

public H2OLiBrMixture (){

super();

type=getType();

M=29;PC=10;TC=350; //Attention: initialisations without physical sense

Tmini=278.15; Tmaxi=448.15;

chemForm="LiBr-H2O mixture";

typeCorps=6;//external susbstance type isMixture

vMixtures= new Vector();

Object[]obj=new Object[2];

obj[0]="LiBr-H2O";

obj[1]=system;

vMixtures.addElement(obj);

}

String[] system={"lithium bromide","water"};

The following methods define the class description, the software used (since it is not a TPS, the name is not important in this case),
the unit to be used to express the composition (in this case mass), the system proposed, and the identifier of the class.

public String getClassDescription(){

return "external mixture class\nWatch out! the LiBr composition is to be expressed as mass fractions";

}

public String getSoftware(){

return "rg";

}

public boolean isMolarFraction(){

return false;

}

public Vector getMixtures(){

return vMixtures;

log(P) = C + +
t + 273.15′

D
(1)

(t + 273.15)′ 2

E

t =′ (2)
A X∑i=0

3
i

i

t− B X∑i=0
3

i
i

https://www.notion.so/A0-29539e880e29468c84ab27070bcade37
https://www.notion.so/A1-97970bd1c2ca4af193b6c151bf0b7501
https://www.notion.so/A2-dcc3467317384c2dbec9d845ce0777b8
https://www.notion.so/A3-89d46319d66f491a9433fe8794e0ce5f

Thermoptim reference manual Volume 3 21

}

public String getType(){

return "LiBr-H2O external mixture";

}

The composition is updated based on the following method, which uses the intermediate variable x, equal to X/100.

public void updateComp(String systType, double[] fract_mass){

//attention: x represents the mass fraction, even if it goes through fract_mol in ExtMixture

selectedSyst=systType;

x=fract_mass[0];

}

The other methods (not presented here) define the calculations to be performed to solve equations (1) and (2).

3.1.4 Instantiation from external classes
It is possible to directly instantiate an external mixture from the external classes, for example in a driver. The syntax is provided
below. You simply have to indicate the system selected (here "LiBr-H2O"), and update the composition (particularly simple in this
case). The calculation and inversion functions can then be used directly, and the results can be written in the output file, for
example.

H2OLiBrMixture monCorps=new H2OLiBrMixture ();//instantiation of the substance

double[]fractmass={0.35,0.65};

monCorps.updateComp("LiBr-H2O",fractmass);

System.out.println("Enthalpie du mélange externe LiBr-H2O pour la composition massique : "+fractmass[0]+" LiBr");

for(int i=0;i<10;i++){

double T=280+10*i;

double[] val=monCorps.CalcPropCorps(T, 5, 0);

System.out.println("T :\t"+T+" h : \t"+val[0]);

}

which gives:

Enthalpy of the external misture LiBr-H2O for the mass composition: 0.35 LiBr

T : 280.0 h : -5.2873148226108775

T : 290.0 h : 21.108948694345447

T : 300.0 h : 47.56170686221427

T : 310.0 h : 74.07095968099561

T : 320.0 h : 100.63670715068943

T : 330.0 h : 127.25894927129576

T : 340.0 h : 153.9376860428146

T : 350.0 h : 180.67291746524594

T : 360.0 h : 207.46464353858977

T : 370.0 h : 234.3128642628461

3.1.5 Coupling class with the properties server TEP ThermoSoft
Coupling with a thermodynamic properties server (TPS) such as TEP ThermoSoft is much more complex, on the one hand because
this TPS is composed of calculation modules that are separate from Thermoptim, and what’s more they are developed in another

Thermoptim reference manual Volume 3 22

language, and on the other hand because the calculable thermodynamic systems can vary greatly from case to case. We will
illustrate the procedure using the example of the class TEPThermoSoft.java.

3.1.5.1 Interface between Java and Delphi

The following method is used to load the library "TEPThermoSoftJava.dll" which constitutes the interface with the Delphi
environment in which TEP ThermoSoft was developed:

Next you must declare the Delphi methods callable from Java that serve to dialog between the two environments (please refer to
Appendix 1 for details on their function and syntax)

3.1.5.2 Definition of mixtures proposed by the TPS

Each TPS should define a list of the systems proposed, which is placed in the “mixtures” folder of the installation directory. The
standard format is as follows:

External mixture file

NH3-H2O NH3-H2O.mel 2 ammonia water M=44 PC=200 TC=404.128 Tmaxi=1100 Tmini=216.7 T0=293.15 P0=1.

CO2 CO2.mel 1 CO2 M=44 PC=73.77 TC=304.128 Tmaxi=1100 Tmini=216.7 T0=273.15 P0=36.59027

Fin

Fin

Each line contains:

the name of the system as it appears on the Thermoptim selection screens (for example NH3-H2O)

the mixture definition file, in the format of the properties server (for example NH3-H2O.mel)

the number of components

the name of the components as they appear on the Thermoptim selection screens

the molar mass, the critical temperature and pressure, maximum and minimum temperatures for the fluid, and the reference
temperature and pressure values (for which h=u=s=0)

It is basically via the mixture definition file that the properties server is initialized. Thermoptim simply modifies the composition and
the state variables.

Note that this list contains the system “CO2” with just one component, i.e., a pure substance. The external mixture mechanism also
makes it possible to emulate a TPS to represent a pure substance by a more precise model than the one used in Thermoptim. In
this specific case, it is a dedicated equation that can be used in the neighborhood of the critical point.

Wagner, R. Span, A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at
pressures up to 800 MPa. J. Phys. Chem. Ref. Data, 25(6):1509, 1996.

The arborescence of the properties server directories can be set up at the user’s discretion. The only requirements are that the dll
links be placed in the installation directory and the list of systems proposed in the “mixtures” folder. In the case of TEP ThermoSoft,
this list in contained in the file “TEPThSoft.mix”.

The constructor of the class TEPThermoSoft.java is very similar to the class considered above:

Thermoptim reference manual Volume 3 23

It introduces a Hashtable to be able to easily reference the existing external mixtures, and executes the method getMixtures() which
constructs the Vector of existing mixtures and the Hashtable, by analyzing the mixture file "TEPThSoft.mix" using the method
lect_data(). The same class can be used with various sets of mixtures depending on the applications.

The three methods of the ExternalMixture interface are then defined, which does not pose any particular problem.

The method updateComp must be able both to initialize the system correctly and update its composition. To do so, it calls the
Hashtable created by the constructor.

An example of how to calculate the saturation temperature is given below (bubble if x = 0, dew if x = 1). It provides a good
illustration of the call sequence to the TEP ThermoSoft methods documented in Appendix 1. Schematically, we start by initializing
the session and we load in the system in question, then we initialize the pressure, converted from bars to Pascals, and the
composition of the mixture. Depending on whether it is a pure substance or a true mixture, the execution of the calculation differs
slightly. The work session is closed to free up resources, and the saturation temperature is returned to Thermoptim.

In order to accelerate the calculations, it is better to avoid opening and closing a session whenever possible. Consequently, variants
of certain methods utilizable only when a session is open have been implemented. They differ from the others in that the term
Session is added to their name.

In both cases, we have created two sister methods: getSatTemperature() and getSatTemperatureSession(). The first manages the
opening and closing of sessions, and second performs the calculations. This makes it possible to directly call the second without
reinitializing the system.

Thermoptim reference manual Volume 3 24

The other calculation methods implemented are more complex, specifically those that use functions involving finding roots using the
bisection method, but the principle is the same. We will refer to the comments documenting the class for additional information.

3.1.5.3 Inversion of functions

The example below is for the method inverting the enthalpy equation to solve for T, when pressure is known.

Overall the procedure is similar: Upon initialization, a session is opened, and the system is loaded. The inversion calculation can
then be performed in this session, since the function f_dicho calls the version of CalcPropCorps that does not open its own session.
When the calculations are done, the session is closed.

There is one particularity of this inversion method: during a liquid-vapor equilibrium, for a pure substance, the temperature
determination is not enough. The vapor quality x must also be determined. It is calculated in f_dicho, then loaded in X[0], which
Thermoptim can access using the method getQuality() of ExtSubstance.

For the time being, only the vapor quality of pure substances is used by the Thermoptim internal classes, but, as shown in the
following section, the mechanism implemented in TEPThermoSoft.java is generic and allows the external classes to access the
composition of multi-component mixtures.

3.1.5.4 Example of calculating the external mixture (NH3-H2O)

Thermoptim reference manual Volume 3 25

TEP ThermoSoft proposes the pair NH3-H2O as a mixture. In order to illustrate the calculations possible, we have created a small
class called NH3_Absorption.java, which displays a screen of the principal properties useful for calculating absorption systems that
use this mixture.

As usual for this application, the composition is entered in mass variables.

In the example opposite, at 140° C for a mass fraction of NH3 equal to 0.7, the point is located inside the isobaric lens at 20 bars,
the bubble and dew temperatures are respectively 66.8 °C and 162.4 °C.

TEP ThermoSoft sends the liquid and vapor molar fractions of NH3, as well as the mean vaporization rate. Their values are sent by
the array double[] X, which, in the case of a pure substance, contains only the vapor quality.

The code for performing the calculations in the class NH3_Absorption.java illustrates the use of the array X by an external class:

3.1.6 Thermodynamic charts of external mixtures
External mixtures not being included in Thermoptim, the software does not provide their thermodynamic charts. To overcome this
limitation, we added a new chart type, called external mixture chart, which allows the use of simplified entropy and (h,P) charts.

The preparation of the chart background can be made thanks to a special external class called CreateMixtureCharts.java. You
should refer to its documentation for further details on this topic.

The new charts are simplified compared to the others in that they show only the bubble and dew curves, as well as a single set of
isovalues , i.e. the isobars for the entropy chart, and the isotherms for the (h, P) chart.

These charts being a variation of vapor charts, their use is explained in the documentation of these.

3.2 External Processes
The structure of external classes was defined earlier in this manual: The class extThopt.TransfExterne inherits from
rg.corps.TransfoExt of Thermoptim and performs the interface, relaying the calculations at the level of an abstract class

Thermoptim reference manual Volume 3 26

(extThopt.ExtProcess) defining the basic methods, and subclassed by the different classes introduced (for example
extThopt.SolarCollector). We recommend that you refer to the API of extThopt.TransfExterne and extThopt. ExtProcess to learn the
syntax and function of the methods available. This API is part of the development environment of the external classes available (in
the folder api_extThopt).

We will begin by explaining the construction procedure implemented in Thermoptim, then we will show how to create a new external
component, by subclassing extThopt. ExtProcess.

3.2.1 Construction
3.2.1.1 Construction of an external process in Thermoptim

The construction procedure is as follows:

1. the user selects an external process from the list, which shows the index in the arrays of external classes loaded in Thermoptim.

2. you load this class, which you transtype in ExtProcess, and encapsulate in an Object.

Class c=(Class)rg.util.Util.componentClasses[i];//you load the class of the external component

Constructor ct=c.getConstructor(null);//you carefully instantiate it with its constructor without an argument.

extThopt.ExtProcess ec=(extThopt.ExtProcess)ct.newInstance(null);

Object ob=ec;//you encapsulated it in an Object

1. you then instantiate the class TransfExterne, which inherits from ComposantExt, i.e., it is in fact a JPanel containing the user
interface defined in the external process.

JPanel1.remove(cType);

cType=new TransfExterne((Projet)Proj,ob, this);//we instantiate the external component

setupCType();//sets up the external user interface

which is done by the following constructor:

public TransfExterne(Projet proj, Object obj, TransfoExterne te){

this.proj=proj;

this.te=te;//we pass the ference to the TransfoExterne internal to Thermoptim

ep= (ExtProcess)obj;//retrieves the external class instantiated in TransfoExterne

ep.proj=proj;//retrieves the reference of the project

Vector vSetUp=new Vector();

vSetUp.addElement(te);//sends the reference to the TransfoExterne

vSetUp.addElement(ep.JPanel1);//loads the interface

vSetUp.addElement(ep.thermoCouplerTypes);//definition of the types of thermocouplers required

setUpFrame(vSetUp);//execution of setCompFrame();

ep.tfe=this;

}

1. if the construction is done while the project file is being read, the process parameters are updated

2. when a project is completely loaded, Thermoptim executes in each external component a special method called init() which
performs initializations by referencing other instantiated external components (see section 3.4). This makes it possible to
synchronize their methods.

3.2.1.2 Creating an external process

To create an external process, simply subclass extThopt.ExtProcess. Let us look at the example of the class SolarCollector (we
have provided only part of the construction of the graphic interface here).

public SolarCollector (){

Thermoptim reference manual Volume 3 27

super();

JPanel1.setLayout(null);//Layout of the JPanel

JPanel1.setBounds(0,0,400,300);//dimensions of the JPanel (generally standard)

JLabel1.setText("glass transmittivity");//definition of the first label

JPanel1.add(JLabel1);

JLabel1.setBounds(0,0,164,24);

JPanel1.add(tau_value);//definition of the first editable text field for entering the glass transmittivity

tau_value.setBounds(164,0,124,24);

tau_value.setText("0.8");

type=getType();//type of process

thermoCouplerTypes=new String[0];//no thermocoupler connected

}

public String getType(){

return "solar collector";

}

public String getClassDescription(){

return "flat plate solar collector (without thermocoupler)\n\nauthor : R. Gicquel january 2003\n\nRef :
note MODÉLISATION D'UN CAPTEUR SOLAIRE THERMIQUE";

}

3.2.2 Updating and calculating the process

Here we refer to the example of the class SolarCollector, whose model is presented in the note “SolarCollector.doc”

The sequence of operations is as follows:

1. update the component before calculation by loading the values of the process and the upstream point

2. read the parameters on the external component screen

3. calculate the power used and the state of the downstream point

4. calculate the thermal loads of the thermocouplers

5. update the external component screen

Let us now look at the practical problems encountered during each of these steps. A few portions of the code are provided below,
but we recommend reading the rest of this note while referring to the entire class SolarCollector.java.

1) update the component by loading the values of the process and the upstream point

The problem here is that an external component does not have direct access to the simulator variables: these values are obtained
by very general methods, which construct Vectors with different structures depending on the desired object.

The procedure is not complicated, but it must be followed carefully:

String[] args=new String[2]; //array of arguments

args[0]="process";//type of element desired (a process in this case)

args[1]=tfe.getCompName();//name of the process (obtained by the reference tfe)

Vector vProp=proj.getProperties(args);//Project method given in Appendix 2

Double f=(Double)vProp.elementAt(3);

double flow=f.doubleValue();//flow rate value, automatically propagated from the upstream process

String amont=(String)vProp.elementAt(1);//name of the upstream point

Thermoptim reference manual Volume 3 28

getPointProperties(amont);//automatic decoding of the Vector (method of the ExtProcess class)

Tamont=Tpoint;//here T1

The method getPointProperties() of ExtProcess automatically loads the state of a point in easily manipulable values, called Tpoint,
Point, lecorps… The method is given below.

public void getPointProperties(String nom){

String[] args=new String[2];

args[0]="point";//type of the element (see method getProperties(String[] args))

args[1]=nom;//name of the process (see method getProperties(String[] args))

Vector vProp=proj.getProperties(args);

lecorps=(Corps)vProp.elementAt(0);

nomCorps=(String)vProp.elementAt(1);

Double y=(Double)vProp.elementAt(2);

Tpoint=y.doubleValue();

y=(Double)vProp.elementAt(3);

Ppoint=y.doubleValue();

y=(Double)vProp.elementAt(4);

Xpoint=y.doubleValue();

y=(Double)vProp.elementAt(5);

Vpoint=y.doubleValue();

y=(Double)vProp.elementAt(6);

Upoint=y.doubleValue();

y=(Double)vProp.elementAt(7);

Hpoint=y.doubleValue();

y=(Double)vProp.elementAt(9);

DTsatpoint=y.doubleValue();

String dum=(String)vProp.elementAt(8);

isTsatSet=Util.lit_b(Util.extr_value(dum));

dum=(String)vProp.elementAt(10);

isPsatSet=Util.lit_b(Util.extr_value(dum));

}

1. read the parameters on the external component screen

The package extThopt provides a number of simple but robust methods for converting the Strings displayed in the JTextField fields
used on the graphic interface to doubles, and vice versa for displaying the doubles in these fields. They are implemented as static
methods of the extThopt.Util class (see Appendix 3):

P=Util.lit_d(P_value.getText());

A=Util.lit_d(A_value.getText());

tau=Util.lit_d(tau_value.getText());

K=Util.lit_d(K_value.getText());

Tex=Util.lit_d(Tex_value.getText())+273.15;

1. calculate the power used and the state of the downstream point

Thermoptim reference manual Volume 3 29

We begin by estimating the Cp of the heat-conducting fluid by making a limited development of the enthalpy function, which means
we use the method CalcPropCorps() of the package Corps and the method getSubstProperties() of ExtProcess, which automatically
loads the state of a point in easily manipulable values, called Tsubst, Psubst, etc. :

public void getSubstProperties(String nom){

String[] args=new String[2];

args[0]="subst";//type of the element (see method getProperties(String[] args))

args[1]=nom;//name of the process (see method getProperties(String[] args))

Vector vProp=proj.getProperties(args);

Double y=(Double)vProp.elementAt(0);

Tsubst=y.doubleValue();//temperature

y=(Double)vProp.elementAt(1);

Psubst=y.doubleValue();//pressure

y=(Double)vProp.elementAt(2);

Xsubst=y.doubleValue();//value

y=(Double)vProp.elementAt(3);

Vsubst=y.doubleValue();//mass volume

y=(Double)vProp.elementAt(4);

Usubst=y.doubleValue();//internal mass energy

y=(Double)vProp.elementAt(5);

Hsubst=y.doubleValue();//mass enthalpy

y=(Double)vProp.elementAt(6);

Ssubst=y.doubleValue();mass entropy

y=(Double)vProp.elementAt(7);

Msubst=y.doubleValue();//molar mass

Integer i=(Integer)vProp.elementAt(8);

typeSubst=i.intValue();//type of substance (1 for water, 2 for a vapor, 3 for a pure gas, 4 for a compound gas, 5 for an external
substance)

y=(Double)vProp.elementAt(13);

ChemExerSubst=y.doubleValue();

}

Then we can calculate the Cp as follows:

double H=Hpoint;//enthalpy of the upstream point

lecorps.CalcPropCorps(Tpoint+1, Ppoint, Xpoint);// recalculates the upstream substance by a Thermoptim function

getSubstProperties(nomCorps);//retrieves the recalculation values (method of the ExtSubstance class)

double Cp=(Hsubst-H);//estimated value of Cp

We then calculate an estimated Taval value to be able to determine the absorbed thermal power Qex:

double DT0=tau*P/K-Tamont+Tex;

double T=Tamont+(DT0)*(1-Math.exp(-K*A/flow/Cp));

double DT=T-Tpoint;

double Qex=Cp*DT*flow;

Thermoptim reference manual Volume 3 30

We determine the value of the mass enthalpy of the downstream point, then we invert this equation to determine the exact value of
Taval (method of the Corps class)

double hAval=Qex/flow+Hpoint;

Tpoint=lecorps.getT_from_hP(hAval,Ppoint);

getSubstProperties(nomCorps);//retrieves the recalculation values (method of the ExtProcess class)

Xpoint=Xsubst;//updates the value of the vapor quality in case the state is diphasic

1. calculate the thermal loads of the thermocouplers

In this simple example, there is no problem, since the component does not use a thermocoupler. Brief instructions are given later in
the manual, as well as in the section on external nodes.

1. update the external component screen

The Thermoptim method setupPointAval() updates the downstream point from the values loaded in a Vector constructed here by the
method getProperties() of ExtProcess:

tfe.setupPointAval(getProperties());

The solar collector yield value is then determined and displayed.

eff_value.setText(Util.aff_d(Qex/P/A, 4));

For this example, the updates before and after recalculation are very simple. In other cases, it may be necessary to access other
data from the simulator. We will explain how to do this below.

3.2.3 Moist gas calculations
To perform the calculations for moist gases from external classes, the method getPointProperties() of ExtProcess retrieves the moist
properties values of a point by the following variables:

Wpoint for the absolute humidity w, Epsipoint for relative humidity ε, Qprimepoint for specific enthalpy q', Tprimepoint for adiabatic
temperature t' (in °C), Trpoint for dew point temperature tr (in °C), VPrimepoint for specific volume vs, Condpoint for condensates,
and M_secpoint for the molar mass of the dry gas.

The method updatePoint given in the appendix forces the following moist calculations:

"setW and calculate all", sets w and calculates all of the moist properties

"setW and calculate q'", sets w and calculates all of the moist properties except t'

"setEpsi", which sets ε

"setEpsi and calculate", sets ε and calculates all of the moist properties

"calcWsat", calculates wsat and all of the moist properties except t'

"modHum", modifies the composition of the gas

3.2.4 Calculation of exergy balances
The external components can also be represented in a productive structure. Their exergy balance screen can be configured (using
String [] getExergyType ()) by the constructor of the external class, for the time being to display, like that of "exchange" processes,
three options and a value input field.

The choices made by the user are then transmitted to the external class for evaluation of getExergyBalance (String [] args), defined
below; they are saved in the structure file. If additional settings are required, it is always possible to set them in the component's
physical diagram screen.

Many exergy balance calculations of components pose no particular problem. It is however necessary to specify carefully how their
different elements should be taken into account in the overall balance, as the system boundary is not same as that of a given
component.

To calculate its exergy balance, each simulator component returns a double [] method getExergyBalance (String [] args) which
includes the seven values to be taken into account in the overall balance (five ports plus exergetic efficiency and irreversibility).

Thermoptim reference manual Volume 3 31

For Thermoptim core elements, the rules for weighting the values of provided to the cycle can be fixed once and for all, but it is not
the same for external components, for which the designer must always specify which values should be included in the overall exergy
balance sheet.

The models of components that can be implemented are so diverse that it is not possible to predict all cases. This is why the
external components refer, in addition to the previous seven values, to two coefficients ranging between 0 and 1 (tauPlusFactor and
deltaXhPlusFactor) which allow one to weight the fraction of the useful work and positive heat exergy supplied to the cycle.

The ExtProcess class includes a default implementation of String [] getExergyType() and double [] getExergyBalance (String []
args), to be sub-classed by external components. The exergy fluid properties must be calculated from the values of enthalpy,
entropy and T0 provided by getSubstProperties ().

The exchange of getExergyBalance between Thermoptim and the external components is done by public double []
getCompExergyBalance (String [] args).

For the calculation of exergy of incoming and outgoing flows, a reference value is taken for T0 and 1 bar.

In PointCorpsDemo, its implementation without argument is as follows:

// calculates the reference exergy, chemical exergy not to be accounted

public double getExergyReference (){//modRG oct04//modRG exerg

lecorps.CalcPropCorps(Util.T0Exer,1,1);

return lecorps.H-Util.T0Exer*lecorps.S;

}

In ExtProcess it is, with two arguments:

/**

returns exergy reference value and initializes T0Exer

/

public double getExergyReference(Corps corps,String nomCorps){

String[] args=new String[2];

args[0]="project";//type of the element (see method getProperties(String[] args))

args[1]="";//name of the process (see method getProperties(String[] args))

Vector vProp=proj.getProperties(args);

Double f=(Double)vProp.elementAt(2);

T0Exer=f.doubleValue();

corps.CalcPropCorps(T0Exer,1.0,0);

getSubstProperties(nomCorps);

return Hsubst-T0Exer*Ssubst;

}

Default implementations for the external components are given below:

The ExtProcess class includes a default implementation of getExergyType () and getExergyBalance (String [] args), to be sub-
classed by external components. The fluid exergy properties are given by getSubstProperties ().

double tauPlus,deltaXhPlus,xqPlus,tauProduct,deltaXhProduct,etaExer,deltaXhi;

void setExergyExtensor(boolean isExtensor){

if(isExtensor)exergyType="extensor";

else exergyType="reductor";

}

public String[] getExergyType(){//modRG exerg

Thermoptim reference manual Volume 3 32

String[] type=new String[9];

type[0]=exergyType;//extensor or reductor

type[1]="false";//affiche JCheckExtSource

type[2]="External source";//label JCheckExtSource

type[3]="false";//affiche JCheckIntExchange

type[4]="Internal exchange";//label JCheckIntExchange

type[5]="false";//affiche JCheckValuableExergy

type[6]="Valuable exergy";//label JCheckValuableExergy

type[7]="false";//affiche champ d'entrée de valeur

type[8]="Source T (°C)";//label sourceT_value

return type;

}

public double[] getExergyBalance(String[]args){//modRG exerg

double[] exergyBalance=new double[9];

exergyBalance[0]=tauPlus;

exergyBalance[1]=deltaXhPlus;

exergyBalance[2]=xqPlus;

exergyBalance[3]=tauProduct;

exergyBalance[4]=deltaXhProduct;

exergyBalance[5]=etaExer;

exergyBalance[6]=deltaXhi;

exergyBalance[7]=tauPlusFactor;

exergyBalance[8]=deltaXhPlusFactor;

return exergyBalance;

}

3.2.4.1 Class SolarConcentratorCC

A solar panel converts the solar flux received in heat transmitted to the fluid flowing through it. This is therefore an exergy extensor,
and in the SolarConcentratorCC class constructor, the type of UPD is set by setExergyExtensor (true);

The exergy calculations can be performed as follows:

double Xh0=getExergyReference(refrig);

tauPlus=0;

deltaXhPlus=0;

tauProduct=0;

xqPlus=P/1000*Sc*(1-T0Exer/5800);//le soleil est une source à 5800 K

deltaXhProduct=(Haval-Hamont-T0Exer*(Saval-Samont))*flow;

deltaXhi=xqPlus-deltaXhProduct;

etaExer=deltaXhProduct/xqPlus;

3.2.4.2 Class FluidEjector

An ejector is modeled as an external mixer. Depending on whether one is interested in motor or entrained flow, an exergy reductor
or an exergy extensor. However, it may also simply be considered as a simple mixer, which avoids associating a junction or a
branch.

Thermoptim reference manual Volume 3 33

To ensure that the incoming exergy is not considered as an external input to the cycle, the following two lines are inserted in the
constructor:

deltaXhPlusFactor = 0;

tauPlusFactor = 0;

The exergy calculations can be performed as follows:

double Xhmi=Hmi-T0Exer*Smi-Xh0-getExergyReference(refrig,nomCorps);

double Xhmsi=Hsi-T0Exer*Ssi-Xh0-getExergyReference(refrig,nomCorps);

double Xhsr=Hd_is-T0Exer*Smix-Xh0-getExergyReference(refrig,nomCorps);

deltaXhProduct=msr*Xhsr;

deltaXhPlus=msi*Xhmsi+mi*Xhmi;

etaExer=deltaXhProduct/deltaXhPlus;

deltaXhi=deltaXhPlus-deltaXhProduct;

3.2.4.3 Class SOFCH2outlet

A fuel cell converts hydrogen into electricity. It behaves like a quadrupole receiving two input fluids, and out of which come the other
two. The quadrupole is formed by combining an input mixer and an output divider, the two being connected by a process-point which
plays a passive role. The calculations are performed by the output divider.

The exergy calculations can be performed as follows:

double DH0=-241830;//kJ/kmol H2 vapeur

double DH0_vap=-285830;//kJ/kmol H2 liquide

double DG0=-237160;//kJ/kmol H2

double elecPower=tau*DG0*epsi*molFlowH2;

double Qlib=-tau*DH0*molFlowH2+elecPower;

tauProduct=-elecPower;

etaExer=elecPower/DH0/molFlowH2;

deltaXhi=(1-etaExer)*tauProduct;

3.2.5 Managing Energy Types
It may first be necessary to manage the assignment of energy types in a more complex manner than in the processes of
Thermoptim’s basic set, which are basically mono-functional. For the processes, the energies used are either purchased, useful, or
other. In an external process, things may be different, with for example a thermal load in purchased energy and a power in useful
energy.

The method updateProcess() of ComposantExt assigns the desired values to the different types of energy. It is easily used with the
method setEnergyTypes of ExtThopt:

tfe.updateProcess(setEnergyTypes(tfe.getCompName(),useful,purchased,other));

public Vector setEnergyTypes(String process, double useful,double purchased, double other){

Vector vEner=new Vector();

vEner.addElement(process);//process name

vEner.addElement(new Double(useful));//useful energy

vEner.addElement(new Double(purchased));//purchased energy

vEner.addElement(new Double(other));//other energy

return vEner;

}

Thermoptim reference manual Volume 3 34

3.2.5 Access to other elements of the simulator
Access to upstream and downstream processes

The names of the upstream and downstream processes are accessible by the elements 9 and 10 of the Properties Vector of the
external process.

String[] args=new String[2];

args[0]="process";//type of the element (see method getProperties(String[] args))

args[1]=tfe.getCompName();//name of the process (see method getProperties(String[] args))

Vector vProp=proj.getProperties(args);

String transfoAmont=(String)vProp.elementAt(9);//name of the upstream process (or "null" if none)

String transfoAval=(String)vProp.elementAt(10);//name of the downstream process (or "null" if none)

Once the name has been obtained, we access its properties by sending it to args[1] in proj.getProperties(args). In this way we can
recursively run through the upstream and downstream processes directly connected to a process.

This is the mechanism used to update the processes upstream and downstream of the external nodes in the method public void
updateStraightlyConnectedProcess(String startProcess, String name, boolean downstream, boolean inletPoint, boolean outletPoint,
boolean updateT, double T, boolean updateP, double P, boolean updateX, double x) of ExtNode.

The example provided in the note “CycleLiBrH2O.doc” that is partially reprinted as an illustration of external nodes shows how to
use these mechanisms.

Let us note in passing that vProp=proj.getProperties(args) also gives access to certain global properties of the project if
args[0]="project" (see Appendix 2), and specifically the flow unit. This is a way to verify that the flow and power units implicitly or
explicitly used in the external class are compatible with those of the project, and to send a message otherwise.

Thermocouplers

Given that thermocouplers are a type of heat exchanger, it is valuable to define them by values such as effectiveness ε, UA, NTU or
LMTD, that can be calculated using similar equations.

The external component must send to each of its thermocouplers the equivalent values for flow rates, inlet and outlet temperature
and thermal energy transferred, which they must take into account in their calculations. Specific methods were placed in the
interface for this purpose.

However, the analogy with exchanges has certain limits: for example, temperature crossovers unacceptable in an exchanger may
occur in a thermocoupler, leading to absurd values.

So it is best to transmit values that are unlikely to lead to this type of situation. One possible solution is to assume that the
thermocoupler is isothermal for calculations of characteristics that are similar to exchanger characteristics, as in the model selected
from the absorber and the desorber in the example presented in the note "TrigenMicroTAG.doc".

To be able to accept multiple couplings, all the heatConnectable define an array of acceptable thermocoupler types (in the example
above: String[]thermoCouplerTypes={"absorber","desorber"}). The calls are then done using the type of thermocoupler as the
identifier, as in:

public double getInletTemperature(String thermoCouplerType);

When the array has dimension 1 and the heatConnectable is a process, the management can be simplified (see below). Otherwise,
the heatConnectable has to be able to distinguish which thermocoupler is calling it, in order to know what to send it back by the
interface methods. It must therefore register with each thermocoupler when the thermocoupler is created. This assumes that a
consistency check is performed during the initial construction, and this check must be repeated for each subsequent reconstruction.

For any external component there are also additional difficulties, given that its access to internal values is limited (the cases
mentioned here are relative to process, but the problems also arise for nodes):

the dimension of the array of acceptable thermocoupler types and those that are associated to it is not necessarily known, which
means it must be initialized specifically in the method setCompFrame(Object obj) of ComposantExt, which is the pivot class
where a large part of the exchanges between the internal part of the code and the external components are performed.

the thermocoupler updates are done by the non-obfuscated method of TransfoExterne updateThermoCouplers(Vector vTC)

Thermoptim reference manual Volume 3 35

the exchanges of information between the heatConnectable and its thermocouplers pass through Vectors, and it must be able to
distinguish the different values depending on the role of each thermocoupler.

The method updateThermoCoupler() of ExtProcess performs the updates:

updateThermoCoupler(String type, double Tin, double Tout, double Q, double flow)

It sends the update elements to the thermocoupler via a Vector constructed by the methods of the ExtProcess class:

protected Vector getThermoCouplerVector(String type, double Tin, double Tout, double Q, double flow){

Vector vTC=new Vector();

vTC.addElement(type);

Double d=new Double(Tin);

vTC.addElement(d);

d=new Double(Tout);

vTC.addElement(d);

d=new Double(Q);

vTC.addElement(d);

d=new Double(flow);

vTC.addElement(d);

return vTC;

}

Though it is not recommended, we can avoid using the method updateThermoCoupler() for a simple external process, with just one
thermocoupler and for which the inlet and outlet temperatures, thermal load and flow rate values can be directly obtained from the
values of the process. However, if there are more than one thermocouplers connected to the same process, each one must be
updated after each recalculation.

Note that a thermocoupler can be initialized only by the external component that it depends on. When a project is loaded, the state
of the thermocouplers is updated only when the external components are calculated. To avoid problems during the first automatic
recalculation of a project, we recommend performing a calculation of the external components equipped with thermocouplers using
the method init() (see section 3.2.1.1).

Nodes

To identify the nodes to which a process can be connected, it is necessary to get the project nodes using the method
proj.getNodeList(), retrieve the structure of each one by calling proj.getProperties() with the right arguments, and see if the name of
the process appears among the names of the branches or the main process of the node. It’s a bit laborious, but even from within
Thermoptim, this is how it has to be done.

Accessing the diagram editor

It is also possible to access the content of the diagram editor from the following Project methods, which are somewhat difficult to
use, especially the second one:

getEditorComponentList(): provides the list of components present in the diagram editor, in the form
"name"=componentName+tab+"type"=componentType. This list can be extracted easily using Util.extr_value("name") and
Util.extr_value("type").

getConnectionCode(String[] args): sends a code showing whether two components of the editor are connected or not: 1 if the
component 1 is upstream of component 2, -1 if it is downstream, and 0 if they are not connected. The structure of the arguments is
as follows:

String[] args=new String[4];

args[0]="Expansion";//type of component 1

args[1]="turbine";//name of component 1

args[2]="Exchange";//type of component 2

Thermoptim reference manual Volume 3 36

args[3]="régen gaz";//name of component 2

The type codes are those used in the saved project files.

3.2.6 Saving and loading the parameters of the model
It is possible to save the parameters of the external components in the usual Thermoptim project files, and subsequently read them.

public String saveCompParameters()

public void readCompParameters(String ligne_data)

The only constraint is that all of the parameters of the external component must fit on one line, in a format compatible with that used
in the software basic set: the different save fields are separated by tabs.

ExtThopt.Util provides a generic method for associating an identifying code to the value of a parameter:

public static String extr_value(String ligne_data, String search)

The save is done in the form “parameter-value” and the search is done in the same way:

valeur=Util.lit_d(Util.extr_value(ligne_data, "parameter"));

If the parameters of the component are too complex to be saved in this way, the user can use this mechanism to save the name of a
specific parameter file and then read that file as necessary.

3.3 External nodes
We recommend that you refer to the API of extThopt.MixerExterne, extThopt.DividerExterne, extThopt.ExtMixer, extThopt.ExtDivider
and extThopt.ExtNode to learn about the syntax and functions of all of the methods available. This API is part of the external class
development environment available to you (in the folder api_extThopt).

3.3.1 Construction
The construction of an external node is identical to that of an external process.

3.3.2 Updating and calculating a node
Here we refer to the example of the class Absorber, a model of which is presented in the specific note called "CycleLiBrH2O.doc"
presenting the internal model of an absorption cycle.

The sequences of operations are as follows:

1. consistency check and updating of the node before calculation

2. reading the parameters on the external component screen

3. updating the processes connected to the external node

4. updating and calculating the associated thermocouplers

5. updating the screen of the external component

6. saving and loading the parameters of the model

Let us now look at the practical problems encountered during each of these steps. A few portions of the code are provided below,
but we recommend reading the rest of this note while referring to the entire class Absorber.java.

1) consistency check and updating of the node before calculation

There are several difficulties involved:

first, it is highly important to make sure that the node is correctly constructed, i.e. that the branches and main process are
indeed what the model designer expects. Since there is no consistency check for this in the diagram editor, a user can very
easily make a mistake in describing the diagram.

next, an external component has no direct access to the variables of the simulator: these values are obtained by very general
methods, which construct Vectors with different structures depending on the desired object.

Consequently, the first step consists of checking the consistency of the node construction. To do this, the designer has a
method of the ExtNode class, getNodeStructure(), which decodes the structure of the node, by loading in a String called

Thermoptim reference manual Volume 3 37

mainProcess the name of the main process, and in a String Array called nomBranches[] the names of the processes of the different
branches, the number of which corresponds to the dimension of the array.

The designer must program a method (called checkConsistency() in our example) in which he runs through the various processes of
the node, performing all the tests he wants, and at the same time updating the inlet parameters of his model.

For example, for the absorber, the method is as follows (to facilitate subsequent processing, we decided to load the names of the
processes into easily identifiable Strings called richSolutionProcess, refrigerantProcess and poorSolutionProcess, and the names of
the points into richSolutionPoint, refrigerantPoint and poorSolutionPoint):

private void checkConsistency(){

String[] args=new String[2];

Vector[] vBranch=new Vector[2];

isBuilt=true;

poorSolutionProcess="";

refrigerantProcess="";

if(nBranches!=2){//first test to check the number of branches

String msg = "Error on the number of branches which is "+nBranches+" instead of 2";

JOptionPane.showMessageDialog(me, msg);

isBuilt=false;

}

else{

for(int j=0;j<nBranches;j++){

args[0]="process";//type of the element (see method getProperties(String[] args))

args[1]=nomBranche[j];//name of the process (see method getProperties(String[] args))

vBranch[j]=proj.getProperties(args);//loads the corresponding process

String aval=(String)vBranch[j].elementAt(2);//gets the downstream point name

Thermoptim reference manual Volume 3 38

getPointProperties(aval);//direct parsing of point property vector

String nom=nomCorps;

//Check the substance at inlet //checks the name of the substance

System.out.println(" ligne "+j+" nomCorps "+nomCorps);

if(nom.equals("LiBr-H2O mixture")){//if it is a mixture, the poor solution was detected

poorSolutionProcess=nomBranche[j];

poorSolutionPoint=aval;

//initialise the inlet variables

Tsp=Tpoint;

Psp=Ppoint;

Hsp=Hpoint;

Xsp=Xpoint;

Double f=(Double)vBranch[j].elementAt(3);

msp=f.doubleValue();

}

if(nom.equals("eau")){// if it is water, refrigerant was detected

refrigerantProcess=nomBranche[j];

refrigerantPoint=aval;

//initialise the inlet variables

Prefr=Ppoint;

Hrefr=Hpoint;

Trefr=Tpoint;

Double f=(Double)vBranch[j].elementAt(3);

mr=f.doubleValue();

}

}

if((refrigerantProcess.equals(""))||(poorSolutionProcess.equals(""))){//otherwise there is an error

String msg = "Error on at least one of the branch substances";

JOptionPane.showMessageDialog(me, msg);

isBuilt=false;

}

}

richSolutionProcess=mainProcess;

args[0]="process";//type of the element (see method getProperties(String[] args))

args[1]=richSolutionProcess;//name of the process (see method getProperties(String[] args))

Vector vPropMain=proj.getProperties(args);

Double f=(Double)vPropMain.elementAt(3);

msr=f.doubleValue();

String amont=(String)vPropMain.elementAt(1);//gets the upstream point name

getPointProperties(amont);//direct parsing of point property vector

Thermoptim reference manual Volume 3 39

richSolutionPoint=amont;

Tsr=Tpoint;

Psr=Ppoint;

Hsr=Hpoint;

Xsr=Xpoint;

String nom=nomCorps;

//Check the substance at inlet

if(!(nom.equals("LiBr-H2O mixture"))){//also check that the main process has the right substance

String msg = "Error on main process substance,which is "+nomCorps+" instead of LiBr-H2O

mixture";

JOptionPane.showMessageDialog(me, msg);

isBuilt=false;

}

}

1. reading the parameters on the external component screen

The package extThopt provides a number of simple but robust methods for converting to doubles the Strings displayed in the
JtestField fields used on the graphic interface, and vice versa for displaying the doubles in these fields. They are implemented as
static methods of the extThopt.Util class:

Tabs=Util.lit_d(Tabs_value.getText())+273.15;

1. updating the processes connected to the external node

The processes associated with the node are updated in Thermoptim by the methods updateMixer(Vector vTC) and
updateDivider(Vector vTC), which, in order to account for all possible cases, update the node and the process flow rates, as well as
the upstream points of the outlet processes and the downstream points of the inlet processes.

The designer of the external node must therefore correctly configure the Vector which passes as an argument. To do so, he can use
two generic methods of ExtMixer and ExtDivider classes:

updateMixer(Vector[]vTransfo,Vector[]vPoints, double TGlobal, double hGlobal)

updateDivider(Vector[]vTransfo,Vector[]vPoints, double TGlobal, double hGlobal)

to which he must provide Vector arrays for the processes and points of each branch and the main vein, as well as the global
temperature and enthalpy values.

To set up the Vectors, ExtNode has a generic method:

void setupVector(String process, String point, int i, double m, double T, double P, double X)

i is the index of the two Vectors, process and point are the names of the process and the point, m is the flow rate of the process, T is
the temperature, P is the pressure and X is the vapor quality of the process point closest to the node.

In our example, the solution was to use three intermediate methods to set up the Vectors:

setupRichSolution(double m, double T, double P, double X)

setupPoorSolution(double m, double T, double P, double X)

setupRefrigerant(double m, double T, double P, double X)

Then size the Vector arrays defined in ExtMixer and run updateMixer():

vTransfo= new Vector[nBranches+1];

vPoints= new Vector[nBranches+1];

setupRichSolution(msr,Tabs,Psr,Xsr);

Thermoptim reference manual Volume 3 40

setupPoorSolution(msp,Tsp,Psp,Xsp);

setupRefrigerant(mr,Trefr,Prefr,1);

updateMixer(vTransfo,vPoints,Tsr,Hsr);

For routine cases, once the flow rates and the upstream or downstream points of the processes linked to the node have been
updated, Thermoptim propagates the recalculation of the various elements using the automatic recalculation engine. However, this
may not suffice and the node designer may have to propagate the updates himself. In fact, this is true in our example for the
propagation of the refrigerant concentration value of the mixture LiBr-H2O. This value is stored in what is normally the vapor quality,
which is never propagated automatically.

In this case, the designer must look at all the points downstream and upstream of the one whose composition was modified, to
make sure that they have been correctly updated as well. He can use the method updateStraightlyConnectedProcess() of the
ExtNode class, which recursively runs through the processes connected upstream and downstream of the node:

updateStraightlyConnectedProcess(richSolutionProcess, richSolutionProcess,

false,//boolean downstream,

true,//boolean inletPoint,

true,//boolean outletPoint,

false,//boolean updateT,

0,//double T,

false,//boolean updateP,

0,//double P,

true,//boolean updateX,

Xsr);

1. updating and calculating the associated thermocouplers

Refer to section 3.2.3 on external processes for a general explanation on updating thermocouplers.

The objective is for the component to send to each of its thermocouplers the equivalent values for flow rates, inlet and outlet
temperature and thermal energy transferred, which they must take into account in their calculations.

The method updateThermoCoupler() of the ExtMixer or ExtDivider classes performs the updates:

updateThermoCoupler("absorber", Tabs, Tabs, Qabs, msr);

For example, here we assumed that the absorber is at temperature Tabs, that it is receiving thermal load Qabs and that it is supplied
with a flow rate msr. If we had not taken the temperature of the absorber as a reference for the exchange calculations, keeping the
temperatures of the steam entering and exiting the external process, we would have ended up with an unacceptable temperature
crossover resulting in an error diagnosis by Thermoptim.

Unlike external processes, the update should always be done with the method updateThermoCoupler(), even for external nodes
using only one thermocoupler.

1. updating the screen of the external component

Refer to the section on external processes.

3.3.3 Managing energy types
As in the case of external processes, it may be necessary to manage the assignment of energy types of an external node, whereas
this problem does not arise for the nodes of the Thermoptim basic set.

To avoid making the existing system more cumbersome, the solution is to artificially assign the desired values to the different types
of energy of the main vein of the external node (see section 3.2.3).

The method updateProcess() of the ComposantExt class can do this, provided that the main vein is a process point. Otherwise, the
energy types set will be reinitialized each time a recalculation is performed.

For example the Desorber class could set its thermocoupler load as purchased energy by:

Thermoptim reference manual Volume 3 41

de.updateProcess(setEnergyTypes(richSolutionProcess,0,Qgen,0));

3.3.4 Saving and loading the parameters of the model
Refer to the section on external processes.

3.4 Access to instances of external nodes and processes
The preceding sections and Appendix 1 explain how to access the various unprotected instances of Thermoptim. The procedures,
which are relatively cumbersome, are limited due to the internal consistency constraints of the software.

However, an external component developer may wish to have full access to the classes he creates, in order to synchronize the
calculations among them. He can do this with the getExternalClassInstances() method of the Project class, which builds a Vector
provided in Appendix 2, containing the various instantiated external nodes and processes, with an identifying description.

As an example, the external node of the main vein “myProcess” and of the type “myType” can be obtained by the following code:

MaClasse monInstance ;

Vector vExt=proj.getExternalClassInstances();

for(int i=0;i<vExt.size();i++){

Object[] obj=new Object[6];

obj=(Object[])vExt.elementAt(i);

String type=(String)obj[0];

if(type.equals("node")){

String main=(String)obj[4];

String nodeType=(String)obj[3];

if((main.equals(myProcess))&&((nodeType.equals("myType ")))){

myInstance=(MyClasse)obj[1];

myInstanceName=(String)obj[2];

}

}

}

Once the instance is found, its members can be accessed under Java rules, according to their access modifiers (public, protected,
etc.)

3.5 External driving of Thermoptim
External driving of Thermoptim has three main applications:

to facilitate the development of external classes by testing them as they are being defined;

to allow one to emulate Thermoptim from other applications, such as working in client-server mode;

to give access to all of the non-protected libraries for various purposes (perform external calculations between recalculations,
guide a user in a training module, etc.).

In this volume, we focus primarily on the first two applications, Volume 4 is especially dedicated to the technological design and the
study of off-design behavior, for which the drivers reveal particularly interesting because they can coordinate recalculations between
different Thermoptim components, including solving coupling equations that appear for this kind of study.

To make external driving possible, the main class of the simulator, Projet, can be subclassed, and a number of non-protected
methods can be overloaded to define specific calculations in addition to those of the basic set. The details of these methods are
provided in the Appendix. In the examples below, the class ProjetThopt inherits from Projet, while the class Pilot is used to manage
the driver.

To avoid confusion, these two classes have been defined in a separate package called “pilot”.

Thermoptim reference manual Volume 3 42

3.5.1 Facilitating the development of external classes
The principle consists of instantiating Thermoptim from the external class Pilot, then launching it using the appropriate methods of
the class ProjetThopt. Windows users should refer to section 6 “External Class Development Environment” which explains how to
use the freeware Eclipse to set up a small user-friendly working environment.

In the example below, Pilot instantiates Thermoptim using the following code; only the first two methods are necessary, and the
other are given to illustrate certain possibilities:

runThopt();

loadProject();

listProcesses();

printProperties();

recalcProperties();

The mandatory methods are:

public void runThopt(){

proj=new ProjetThopt();//instantiate Thermoptim

proj.show();//display the simulator screen

proj.openEditor();//display the diagram editor

}

public void loadProject(){

String[] args=new String[4];

args[0]="complet.prj";//project file name

args[1]="complet.dia";//diagram file name

args[2]=".";//working directory

args[3]="noTest";//no save test if a project is already open

proj.loadSelection(args);//load the example defined in args[]

}

In order for the external classes under development to be taken into account in Thermoptim, they must be declared in the method
getInternalClasses() of the ProjetThopt class. The figure below shows how to proceed.

The package extThopt includes a Util class that provides a number of utility methods for formatting numbers, reading them
onscreen, saving and reading values, finding roots using the bisection method, etc. (see Appendix 3).

Once the classes are defined, compile them, then launch the driver by typing F5. The example defined in the method loadProject()
of the Pilot class will be loaded when you click on the button "Run Thermoptim and load example" on the driver screen.

3.5.2 Providing access to the unprotected libraries

Thermoptim reference manual Volume 3 43

There are two ways to drive Thermoptim: either completely from an external application that instantiates and sets parameters for the
software, or partially, for a given project.

In the first case, the principle consists of instantiating Thermoptim from the external class Pilot, then accessing its libraries using the
appropriate methods of the class ProjetThopt as explained in the previous section.

For example, you can instantiate a substance and calculate its thermodynamic properties, or display a thermodynamic diagram and
plot a pre-recorded cycle.

The driver acts as an independent application that can launch Thermoptim, which it considers as a library of external classes, and
build projects by instantiating Thermoptim classes. Since it knows these instances, it can learn their state at any time. For the time
being, it is impossible to access the driver from inside Thermoptim.

When the driver is launched, a window appears with buttons for launching Thermoptim and loading an example. The corresponding
class (Pilot) has a few basic methods for:

launching Thermoptim: runThopt()

loading an example: loadProject()

accessing the properties of the simulator elements: proj.getProperties(args)

simplifying the parsing of the properties vectors: getSubstProperties(String nom), getPointProperties(String nom), extr_value(String
s), lit_b(String s)

In the second case, a specific driver class is assigned to a given project, and this class is instantiated when the project is loaded.
This class can coordinate the recalculations of the project according to specific rules. The driver class is an extension of
extThopt.ExtPilot, which derives from rg.thopt.PilotFrame. To be able to link it to a project, it must first be made into an external
class so that it can be loaded in Thermoptim when it is launched. Once the project is open, select the driver class linked to it via the
line “Pilot frame” in the Special menu. If the project is saved, the name of the driver class is saved so that it can be instantiated
when the project is loaded.

Driving Thermoptim

calcThopt(): launches a recalculation in Thermoptim

setupThopt(): instantiates the diagram editor and disables certain functions of Thermoptim

openEditor(): instantiates the diagram editor

setControls(): enables to take control between two recalculations, to modify certain parameters of Thermoptim, for example

loadSelection(String[] args): loads the examples

Accessing the simulator

String[] getHxList (): list of the exchangers of the project

String[] getNodeList (): list of the nodes of the project

String[] getPointList (): list of the points of the project

String[] getProcessList(): list of the processes of the project

String[] getSubstanceList (): list of the substances of the project

Vector getProperties(String[] args): properties Vector. Its structure, which depends on the type of element in question, is provided in
the Appendix

void notifyElementCalculated(String[] element) : this method is executed in Thermoptim each time an element (point, process, node,
exchanger) is calculated. Argument element is constructed as follows:

if(pt instanceof Transfo) element[0]="process";

else if(pt instanceof PointCorps) element[0]="point";

else if(pt instanceof Node) element[0]="node";

else if(pt instanceof HeatEx) element[0]="heatEx";

element[1]=pt.getName();

element[2]=pt.getType();

Thermoptim reference manual Volume 3 44

Thus, element can be directly used as an argument in getProperties(): getProperties(element) gives the state of the element at
stake.

Another access point is the Class Corps, which has a number of public methods accessible from the driver, including:

CalcPropCorps (double T, double p, double x) : calculates the complete state of a substance

getSubstProperties() : properties Vector

a number of methods for inverting the state functions.

Accessing the diagram editor

getEditorComponentList() : provides the list of components present in the diagram editor, in the form
name="componentName"+tab+type="componentType". This list can be extracted easily using extr_value("name") and
extr_value("type").

getConnectionCode(String[] args) : sends a code showing whether two components of the editor are connected or not: 1 if the
component 1 is upstream of component 2, -1 if it is downstream, and 0 if they are not connected. The structure of the arguments is
as follows:

String[] args=new String[4];

args[0]="Expansion";//type of component 1

args[1]="turbine";//name of component 1

args[2]="Exchange";//type of component 2

args[3]="régen gaz";//name of component 2

3.5.3 Operation in client-server mode
For various reasons, it may be advantageous to use Thermoptim through a network, for educational purposes, or to associate a
detailed thermodynamic model to a controller (regulation), such a model of heat pump coupled to a heating regulator.

The solution was to develop a small application based on sti.ThoptEmulator class, instantiated by sti.ThoptLauncher, which can
launch a server managed by sti.ThoptServer class that manages exchanges with the outside world.

The server is launched by EmulatorServerExec.jar, which uses EmulatorServer.zip which contains the basic libraries. Both files must
be placed in the Thermoptim installation directory.

Data exchange is via BufferedReader and PrintWriter, as multiple line Strings, which are decoded by the client and server classes.
The client is a Java class called Emulator.java, which must of course be adapted according to the needs.

The proposed solution is to write an external driver, which must implement the Emulable interface, which defines two methods for
sending and receiving requests (String [] getValues() and setParameters (String [] params)). The String [] params of
setParameters() and getValues() comprise in the first line the number of lines and in the following the value records. ThoptServer
simply passes from client to server and vice versa both String [], without modifying them.

It is also possible that the exchange of requests is done using the ModBus protocol, which, although more complex, has the
advantage of being able to communicate with applications not using Java encodings that are often used in the world of control
system.

3.6 Integrating external classes in the library extUser2.zip
Once the external classes are developed, they must be integrated into the library extUser2.zip so that they can be automatically
recognized in the purely executable version of Thermoptim.

As indicated by its extension, file extUser2.zip is a compressed archive which must be built in a specific format. You can do it by
using either a utility named "external class manager" or a standard compressor such as Winzip, as indicated in the next sections.

3.6.1 Using the external class manager
A Thermoptim functionality allows you to perform this operation: the external class manager is available from the menu Special in
the simulator. It requires installing some files containing the libraries it needs.

Files which must be present are:

https://direns.mines-paristech.fr/Sites/Thopt/en/co/gestionnaire-classes.html

Thermoptim reference manual Volume 3 45

The Extlib.ini file, which contains a single line giving the name of the path to the directory (by default "externalClassLibrary2")
where the library (with a subdirectory extThopt);

The externalClassLibrary2.zip archive where are temporarily stored by Thermoptim the library classes. Otherwise, the content
extUser2.zip can only be displayed.

Place the new classes not included in the archive in the directory \externalClassLibrary2\extThopt.

If external libraries are loaded by the classes, also copy them to where they should be relative to the directory
\externalClassLibrary2.

Caution: It is recommended to start by making a copy of extUser2.zip to be able to restore it in case of error. However, as the
manager begins by duplicating the file extUser2.zip as extUser2_copy.zip, it is possible in case of problems start from this file by
renaming it.

Launch the manager from the Special menu of the simulator. If conflicts exist between the code names assigned to classes,
messages are displayed and written to the file output.txt. The screen below is displayed.

In the upper left hand part, it displays all of the classes available in the class library directory whose path is specified in the file
ExtLib.ini (by default the directory "externalClassLibrary2"). These classes are arranged by type (substances, external processes,
external mixtures, external dividers, drivers). On the right hand side, the content of the extUser2.zip archive is displayed, arranged in
the same manner. Thus it is easy to compare the two sets of classes.

If you select one class in either of the lists, a description appears in the window below. You can also select multiple classes, in which
case nothing is displayed.

You can transfer a single or multiple selection from the class library (left) to the archive extUser2.zip by clicking on the small central
arrow

.

If a class selected already exists in the archive, a message warns you, recalling the dates of creation of both classes, and asks if
you want to replace the existing one, or keep it.

Thermoptim reference manual Volume 3 46

You can remove one or more classes from the archive extUser2.zip by clicking on the button "Remove from extUser2.zip". A
message asks you to confirm the deletion for each class selected, with the option to save the class in the class library. If you want to
save a class that exists already in the library, a message is displayed showing the creation dates of the two classes, and asking you
if you want to replace or keep the existing one.

With the two buttons called “export info”, you can create text files called "zipList.txt" or "libraryList.txt" which contain the name, type
and description of each class.

When the left and right windows are loaded, a test is performed to check that the classes are not of the same type, which could
cause errors in Thermoptim. If they are the same type, you must differentiate them and recompile the modified classes.

Finally, the button “update” updates the two windows once all transfers and removals have been completed, this operation not being
automatically done.

If you have modified the file extUser2.zip, it is strongly recommended that you close and then reopen Thermoptim because libraries
have been modified and Thermoptim may need to be reset.

Attention to related external classes (including superclasses): it is imperative to add or remove them all, otherwise Thermoptim may
not be able to start correctly (the problem would of course be the same using a standard compactor as shown in the Volume 3 of the
Thermoptim reference manual). However, if you use classes other than those recognized Thermoptim, you should include them in
extUser2.zip manually, because this process cannot be automated.

If Thermoptim does not start after you have changed extUser2.zip, open the file error.txt, which generally contains information on
problems which have occurred.

Lastly, note that the external class viewer analyzes both extThopt2.zip and extUser2.zip files, while the manager only analyzes
extUser2.zip.

You can transfer by hand extThopt2.zip external classes in the library for transferring them in extUser2.zip, then delete them from
extThopt2.zip, but this is not recommended.

3.6.2 Using a standard compressor
It is also possible to use a standard compressor such as WinZip by adding the new class in the archive. However, problems have
been reported with certain versions of WinZip.

Thermoptim reference manual Volume 3 47

With WinZip, you can proceed as follows:

create a new directory and call it “zip”, then create a sub-directory in that directory called “extThopt”;

copy all the classes that you want to load in extUser.zip or extUser2.zip into this directory (the classes are located in the class
creation directory of your development environment (/extThopt/);

Don’t forget to quit Thermoptim, otherwise you will not be able to write to the archive extUser.zip or extUser2.zip;

Open extUser.zip or extUser2.zip, click on “Add” and go to the directory “zip”. Select the option “Recurse folders” then click on
“Add With Wildcards”, which will add the entire contents of the sub-directory extThopt (the file path to the classes in the archive
must be correct, otherwise Thermoptim will not be able to load them).

If you encounter difficulties, send an e-mail to contact@s4e2.com explaining your problem, and attach the class you want to add to
extUser2.zip. The new archive will be returned to you as soon as possible.

3.6.3 Modifying the classpath for adding java libraries
If you want to add other Java libraries that your classes call, you have to indicate their file path in the classpath. In Windows, open
the Thermoptim configuration file “Thopt.cfg” in a text editor, and add their file paths after “-cp”, separated by semicolons. Use a
similar procedure for Unix and Macintosh.

3.6.4 Viewing external classes

mailto:contact@s4e2.com

Thermoptim reference manual Volume 3 48

To help you use and manage the external classes, the line External Class Viewer from the Special menu of the simulator displays all
of the external classes available. They are sorted by type (substances, processes, mixers, dividers, drivers) with a short description
of the class selected and where it comes from (extThopt.zip and extUser2.zip archives as well as classes under development).

This screen can be consulted while you are developing your model. The more careful you are in writing the description of your
classes, the more helpful this screen will be to users. Remember that it is very important to document your classes thoroughly, and
you can include the documentation reference in your description. The documentation is composed of two parts, one for users and
one for class designers. A poorly documented class will be difficult to use or modify.

4 External class development environment
To develop external classes, if you do not already have a Java development environment and if you work in Windows, you can use a
freeware application called Eclipse. Developed as open source, Eclipse can be downloaded from http://www.Eclipse.org.

With Eclipse, you can write your classes in Java, and compile and test their integration in Thermoptim. To make things easier, a
start-up workspace is provided. It is called Eclipse_Thopt.

4.1 Presentation of the workspace
The workspace consists of the following:

in the left part of the screen there is a list of Java files, including a small class called Starter, which launches the driver, and the
classes under development (external files).

in the right part you have the various tabs containing the code of the classes.

the bottom window is for messages.

http://www.eclipse.org/

Thermoptim reference manual Volume 3 49

4.2 Installing Eclipse
To install the development environment, log on to the Eclipse website, and follow the instructions.

Explanations are given in the Thermoptim-UNIT portal. However our explanations can only be succinct and related to the
particularities of Thermoptim.

Given the potential of Eclipse, it is a widely used environment, and you can easily find sites explaining in detail how to install it for
various operating systems.

In what follows, we assume that the reader knows some basics of the Java language. If this is not the case, we suggest that he refer
to an introductory book before attempting to use the development environment.

Start by installing the JDK and its documentation, then Eclipse. When you run Eclipse for the first time, the software suggests that
you associate the extensions of certain files with it. Click "OK" unless you have a good reason not to make that choice. Then choose
the directory paths containing the JDK and its documentation.

Unpack the Thopt25_EclipseDemo.zip file and place the Eclipse_Thopt folder in the Eclipse installation directory. This is a
Workspace with all the files you need to work with Thermoptim. Optionally add the ThoptEdu2.jar or Thopt2.jar archive of
Thermoptim and inth2.zip, as well as your license files (all these files are in the Thermoptim installation directory).

For the project to run properly, it must be fully configured. Open the Projects / Properties menu and then Java Compiler. You get a
screen that looks like the one below on the left. Check which JDKs appear and which one is checked.

Then you need to specify the libraries required by your application, in this case all of the ones Thermoptim needs to work, plus
Thermoptim itself. To do this, open the Projects / Properties menu, then Java Build Path, and then Libraries. If the libraries of the
figure do not appear, click on "Add JARs", and select in the directory "Eclipse_Thopt" the files that appear in the screen below on
the right: ThoptEdu2.jar or Thopt2.jar, extUser2. zip, im2.zip, inth2.zip, extThopt2.zip, gef.jar. Once the archives are selected, click
on "OK". You can now start developing your external classes as described in section 3.

https://direns.mines-paristech.fr/Sites/Thopt/en/co/environnement-developpement-eclipse.html

Thermoptim reference manual Volume 3 50

The source code of the base classes of the package extThopt is given in the form of an archive. These classes are already
contained in the archive extThopt.zip and should not be loaded in the development environment. You can modify them, but they may
no longer be compatible with the “official” versions of the Thermoptim external classes.

Appendix 1 describes how they are used and gives a number of examples. Appendix 2 gives the code for the Thermoptim methods
that return Vectors whose details it is useful to know for programming external classes. Appendix 3 contains a brief description of
the methods in the Util class.

4.3 Emulating Thermoptim from Eclipse

Thermoptim reference manual Volume 3 51

To be able to emulate Thermoptim in order to test a class under development, we created a special workspace in which three
classes that we present here play a key role:

Starter is the class launched when Eclipse starts up. It initializes the output files ("output.txt" and "error.txt") and instantiates the
Pilot class of the pilot package;

Pilot is the class that launches Thermoptim, instantiating the class ProjetThopt of the same package and running the method
runThopt(). Next, the method loadProject() displayed on the screen of the figure presenting the workspace loads a project and a
diagram for testing the external classes under development. In the Eclipse workspace figure, we have entered different
examples, since only the last one loaded in the array args[] is taken into account (this enables us to change examples easily, by
moving the two lines involved);

ProjetThopt, which inherits from the class Projet of Thermoptim, has a method called getInternalClasses() in which the external
classes to be loaded in Thermoptim are defined.

Once the methods loadProject() and getInternalClasses() have been modified, simply recompile the project and run it so that the
load window of Thermoptim and its project appear.

By clicking on “Run Thermoptim and load example”, you load the example you want. You can use all the features of the software,
including the ability to modify and save your example. If a project or diagram file is missing, a message will alert you.

In this way, you can develop your class and directly test it in Thermoptim, which will save a lot of time. Once the class is developed
simply archive it in extUser2.zip so that it can be distributed and used outside the development environment.

Practically speaking, the procedure is as follows:

Following the instructions given in chapter 3, start by creating your external class, either by modifying one of the ones provided
(the java files are in the directory “src” of the Workspace) or from the Eclipse assistant (menu Project/New Class), and compile it
(menu Build/Compile file)

Declare your class in the method getInternalClasses() of the class ProjetThopt, following the instructions provided, so that it is
loaded in Thermoptim when the software is loaded, and recompile ProjetThopt

To test your class, duplicate a project and diagram example, enter the new names on the last lines of the array args[] in the
method loadProject() of Pilot, and recompile Pilot.

Launch execute (menu Build/Execute Project, or F5) and click on “Run Thermoptim and load example”

The screen of the Pilot class has another button allowing you to instantiate another class if you want to. Simply write the
corresponding code in the method bOtherClass_actionPerformed().

Thermoptim reference manual Volume 3 52

Appendix 1 : Thermoptim methods which can be called by external
classes
In this appendix, we present Thermoptim methods which can be called by external classes, indicating what is their purpose and
giving a number of implementation examples. Their API is itself defined in the JavaDoc that is in the directory api_Thermoptim of the
development environment.

Package rg.corps
Two class names are not obfuscated: rg.corps.Corps, mother class of all substances and rg.corps.CorpsExt, mother class of all
external substances.

The following methods can be called by external classes:

In Corps
To calculate a substance state

public void CalcPropCorps (double T, double p, double x)

To instantiate a substance whose name is known

public static Object createSubstance(String nomCorps)

example :

Object obj=Corps.createSubstance("eau");//instantiation of the substance, wrapped in an Object

Corps leau=(Corps)obj;//transtyping of the Object

double T=leau.getT_from_hP(3400,50);// Reverse calculation inT of the enthalpy the pressure being known

System.out.println("T eau : "+T);

To get the Cp of a substance knowing its Cv

public double getCp(double Cv)

Reverse calculation of state functions

public double getP_from_hT(double hv,double T)

public double getP_from_sT(double sv,double T)

public double getP_from_sT(double sv,double T, double pmin, double pmax)

public double getP_from_vT(double v,double T)

public double getT_from_hP(double hv,double P)

public double getT_from_sP(double sv,double P)

public double getT_from_sv(double s,double v)

public double getT_from_uv(double u,double v)

public double[] getQuality(), used with all previous methods, gives the the vapor-liquid equilibrium composition. In particular, for pure
substances, getQuality() [0] is the steam quality.

Methods for calculating the saturation pressure or temperature

public double getSatPressure(double T, double x)

public double getSatTemperature(double P, double x)

To get a substance state

public Vector getSubstProperties()

method getSubstProperties() of extProcess indirectly uses this method to load the values of the double
Tsubst,Psubst,Xsubst,Vsubst,Usubst,Hsubst,Ssubst,Msubst,typeSubst;

example :

Thermoptim reference manual Volume 3 53

lecorps.CalcPropCorps(Tpoint+1, Ppoint, Xpoint);//calculates the substance state

getSubstProperties(nomCorps);// retrieves the calculated values and loads them in particular in Hsubst

double Cp=(Hsubst-H);

typeSubst is 1 for water, 2for steam, 3 for a pure gas, 4 for a compound gas, 5 for a single external substance, and 6 for an external
substance of the Mixture type.

Initialization of an external substance

public void initCorpsExt(double M, double PC, double TC, double VC,

double Tmini, double Tmaxi, double Pmini, double Pmaxi, int typeCorps)

Defines a comment for an external substance (chemical formula, composition ...)

public void setComment(String comment)

Gives a name to an external substance

public void setNom(String name)

Loads values of calculations made by the external substance

public void setState(double P, double T, double xx,

double U, double H, double S, double V, double Cv,

double Xh)

To get a gas composition

public Vector getGasComposition()

example :

getPointProperties(cO2Point);// retrieves the properties of point cO2Point

Vector nouvComp=lecorps.getGasComposition();//retrieves the gas composition

updateGasComp(nouvComp, cO2Process);//updates the gas composition

To update a gas composition

public void updateGasComp(Vector vComp)

The Vector structure is as follows:

public void updateGasComp(Vector vComp){

Integer i=(Integer)vComp.elementAt(0);

int nComp=i.intValue();

String[] Comp= new String[nComp];

double[]fractmol= new double[nComp],fractmass= new double[nComp];

Double[]fracMol= new Double[nComp],fracMass= new Double[nComp];

Comp=(String[])vComp.elementAt(1);

fracMol=(Double[])vComp.elementAt(2);

fracMass=(Double[])vComp.elementAt(3);

for(int j=0;j<nComp;j++){

Double f=(Double)fracMol[j];

fractmol[j]=f.doubleValue();

f=(Double)fracMass[j];

fractmass[j]=f.doubleValue();

}

updateSubstComp(Comp,fractmol,fractmass);

Thermoptim reference manual Volume 3 54

}

In CorpsExt
public double getLiquidConductivity(double T)

public double getLiquidViscosity(double T)

public double getVaporConductivity(double T)

public double getVaporViscosity(double T)

Package rg.thopt
The following class names are not obfuscated:

rg.thopt.Projet, simulator class,

rg.thopt.TransfoExterne, rg.thopt.DividerExterne, rg.thopt.MixerExterne et rg.thopt.ComposantExt, used to define the external
components

rg.thopt.Compression and rg.thopt.ComprExt, used to define the external compressors.

The following methods can be called

In Projet
Launches Thermoptim recalculation from the driver

public void calcThopt()

returns a code that allows the driver to know if two components of the editor are connected or not:

public int getConnectionCode(String[] args)

1 if component 1 is the upstream component 2, -1 otherwise, and 0 if not connected.

The argument structure is the following :

String[] args=new String[4];

args[0]="Expansion";//type of component 1

args[1]="turbine";//name of component 1

args[2]="Exchange";//type of component 2

args[3]="régen gaz";// name of component 2

Lists the components in the diagram editor

public String[] getEditorComponentList()

edited as name="nomComposant"+tab+type="typeComposant". This list can be broken easily with extr_value("name") and
extr_value("type")

Lists of elements

public String[] getHxList ()

public String[] getNodeList ()

public String[] getPointList ()

public String[] getProcessList()

public String[] getSubstanceList ()

Vector of properties whose structure depends on the type of element considered

public Vector getProperties(String[] args)

type=args[0]; "subst" / "point" / "process" / "heatEx"

nomType=args[1];

Thermoptim reference manual Volume 3 55

This method is fundamental: it allows access to all data related to a primitive type once one the type and name known. It is widely
used by generic methods of extThopt package.

The corresponding Thermoptim internal code is given in annex 2. It lets you know the structure of the Vector returned (depending on
the type of primitive called).

Loading of examples by the Thermoptim driver

public void loadSelection(String[] args)

method executed in Thermoptim each time an item (point, process, node, exchanger) is calculated

public void notifyElementCalculated(String[] element)

element is constructed as follows:

if(pt instanceof Transfo) element[0]="process";

else if(pt instanceof PointCorps) element[0]="point";

else if(pt instanceof Node) element[0]="node";

else if(pt instanceof HeatEx) element[0]="heatEx";

element[1]=pt.getName();

element[2]=pt.getType();

Thus, it can directly be used as an argument in getProperties(): getProperties(element) provides the state of the element.

allows the driver to take control between two recalculations, to modify certain Thermoptim parameters

public void setControls()

instantiates the diagram editor and used to disable certain functions by the Thermoptim driver

public void setupThopt()

instantiates the diagram editor

public void openEditor()

loading external classes in the Thermoptim driver

public Vector getInternalClasses()

Operations on the charts from the Thermoptim driver

public void setupChart (Vector v)

example of opening chart, choice of substance and drawing of two cycles

if(proj!=null)proj.calcThopt();//if necessarye instantiation of Thermoptim

Vector v=new Vector();

v.addElement("openDiag");//opening of a chart

v.addElement("1");// chart type (1 for vapors, 2 for ideal gas, 3 for psychrometric)

proj.setupChart(v);

v=new Vector();

v.addElement("selectSubstance");//selection of a substance

v.addElement("R134a");//name of the substance

proj.setupChart(v);

v=new Vector();

v.addElement("readCycle");//loading a cycle

v.addElement("frigoR134aFin.txt");//file name

proj.setupChart(v);

v=new Vector();

Thermoptim reference manual Volume 3 56

v.addElement("readCycle");// loading a cycle

v.addElement("frigoR134a.txt");// file name

proj.setupChart(v);

updates a point or a process

public void updatePoint(Vector v)

example : method updateStraightlyConnectedProcess() of ExtNode includes:

Vector vPoint=new Vector();

vPoint.addElement(outletPointName);

vPoint.addElement(Util.aff_b(updateT));

vPoint.addElement(Util.aff_d(T));

vPoint.addElement(Util.aff_b(updateP));

vPoint.addElement(Util.aff_d(P));

vPoint.addElement(Util.aff_b(updateX));

vPoint.addElement(Util.aff_d(x));

proj.updatePoint(vPoint);

In PilotFrame
To get a handle on the Projet calling

public void getProjet ()

In ComposantExt
To calculate the component

public void calcProcess()

To get the component’s name

public String getCompName()

To get the component’s type

public String getCompType()

To read the component settings saved in the project file

public void readCompParameters(String ligne_data)

To save the component settings in the project file

public String saveCompParameters()

To initialize the component screen and its internal logical configuration

public void setCompFrame(Object obj)

public void setDivFrame (Object obj)

public void setMixFrame (Object obj)

to update the process (flow, inlet point, outlet point, energy types)

public void setupFlow(double flow)

public void setupPointAmont(Vector vProp)

public void setupPointAval (Vector vProp)

public void updateProcess(Vector vEner)

To construct the Vector vProp, ExtProcess has a generic method, which wraps the point state:

public Vector getProperties(){

Thermoptim reference manual Volume 3 57

Vector vProp=new Vector();

vProp.addElement(lecorps);//Corps

vProp.addElement(nomCorps);//Corps

vProp.addElement(new Double(Tpoint));

vProp.addElement(new Double(Ppoint));

vProp.addElement(new Double(Xpoint));

vProp.addElement(new Double(Vpoint));

vProp.addElement(new Double(Upoint));

vProp.addElement(new Double(Hpoint));

return vProp;

}

example :

tfe.setupPointAval(getProperties());

method updateProcess() of ComposantExt can assign values to different types of energy. It is easily implemented with the method
setEnergyTypes() ExtThopt (see Section 3.2.3).

example :

tfe.updateProcess(setEnergyTypes(useful,purchased,other));

In TransfoExterne
To update a thermocoupler

public void updateThermoCouplers(Vector vTC)

To construct the Vector vTC, ExtProcess has a generic method, which wraps the values:

protected void updateThermoCoupler(String type, double Tin, double Tout, double Q, double flow){

Vector vTC=new Vector();

vTC.addElement(type);//type du thermocoupleur considéré

Double d=new Double(Tin);

vTC.addElement(d);

d=new Double(Tout);

vTC.addElement(d);

d=new Double(Q);

vTC.addElement(d);

d=new Double(flow);

vTC.addElement(d);

tfe.te.updateThermoCouplers(vTC);

}

Provides the values of the thermocoupler of the type called

public Vector getThermoCouplerData(String thermoCouplerType)

The Vector returned contains only for the moment the thermocoupler name, but this should evolve.

In DividerExterne
Updates the divider

public void updateDivider (Vector vTC)

Thermoptim reference manual Volume 3 58

To construct the Vector vTC, ExtProcess has a generic method, which wraps the values:

protected Vector getUpdateVector (Vector[]vTransfo,Vector[]vPoints, double TGlobal, double hGlobal){

Vector vTC=new Vector();

for(int j=0;j<vTransfo.length;j++){

vTC.addElement(vTransfo[j]);

}

for(int j=0;j<vPoints.length;j++){

vTC.addElement(vPoints[j]);

}

Vector vGlobal=new Vector();

vGlobal.addElement(new Double(TGlobal));

vGlobal.addElement(new Double(hGlobal));

vTC.addElement(vGlobal);

de.de.updateDivider(vTC);

}

In ExtDivider the call is made as follows :

protected void updateDivider(Vector[]vTransfo,Vector[]vPoints, double TGlobal, double hGlobal){

Vector vTC=getUpdateVector(vTransfo,vPoints, TGlobal, hGlobal);

de.de.updateDivider(vTC);

}

These methods make use of tables of Vector vTransfo and vPoint representing the main vein and branches, which may be useful to
automate the construction, as in the Desorber class, where generic methods called by a name with a physical sense are used to
build the Vector:

private void setupRichSolution(double m, double T, double P, double X){

vTransfo[0]=new Vector();

vPoints[0]=new Vector();

vTransfo[0].addElement(richSolutionProcess);

vTransfo[0].addElement(new Double(m));

vPoints[0].addElement(richSolutionPoint);

vPoints[0].addElement(new Double(T));

vPoints[0].addElement(new Double(P));

vPoints[0].addElement(new Double(X));

}

example : update of external divider Desorber after calculation :

vTransfo= new Vector[nBranches+1];

vPoints= new Vector[nBranches+1];

setupRichSolution(msr,Tsr,Psr,Xsr);

setupPoorSolution(msp,Tgen,P,Xsp);

setupRefrigerant(mr,Trefr,Prefr,1);

updateDivider(vTransfo,vPoints,Tsr,Hsr);

Gives the divider values

Thermoptim reference manual Volume 3 59

public Vector getDividerData()

Currently not used, because duplicating getProperties() Project executed for a node. ExtDivider it provides method public void
getDividerStructure() which loads the structure of the node.

To update a thermocoupler (see TransfoExterne)

public void updateThermoCouplers(Vector vTC)

Provides the values of the thermocoupler of the type called (see TransfoExterne)

public Vector getThermoCouplerData(String thermoCouplerType)

In MixerExterne
Updates the mixer (see DividerExterne)

public void updateMixer (Vector vTC)

Gives the mixer values (see DividerExterne)

public Vector getMixerData ()

Pour mettre à jour un thermocoupleur (voir TransfoExterne)

public void updateThermoCouplers(Vector vTC)

Provides the values of the thermocoupler of the type called (see TransfoExterne)

public Vector getThermoCouplerData(String thermoCouplerType)

In ComprExt
public double getComprFlow()

public double getComprIsentropicEfficiency()

public String getComprName()

public double getComprRatio()

public double getComprRelaxValue()

public double getComprRotationSpeed()

public double getComprSweptVolume()

public String getComprType()

public double getComprVolumetricEfficiency()

public double getComprVolumetricFlow()

public double getPumpFanVolumetricFlow()

public Vector getSupplyPointProperties()

public void makeComprDesign()

public void readComprParameters(String line)

public String saveComprParameters()

public void setComprFrame(Object ob)

Annex 2 : Thermoptim methods code
We give here the code of certain Project and Corps methods whose structure must be faithfully reproduced if they are to be used in
subclasses.

Method getProperties() of Projet
/**

Fournit les valeurs thermodynamiques des divers types primitifs

Thermoptim reference manual Volume 3 60

<p>

Gives thermodynamic values for the various element

@param args String[]

@param type=args[0]; "project" / "subst" / "point" / "process" / "heatEx"

@param nomType=args[1];

*/

public Vector getProperties(String[] args){

String type, nomType;

type=args[0];

nomType=args[1];

Vector vProp=new Vector();

if(type.equals("project")){

vProp.addElement(Util.unit_m);//unité des débits [0]

vProp.addElement(Util.unitT);//unité des températures[1]

vProp.addElement(new Double(Util.T0Exer)); // température de l'environnement[2]

vProp.addElement(new Double(getEnergyBalance()[0]));//énergie payante [3]

vProp.addElement(new Double(getEnergyBalance()[1])); //énergie utile [4]

vProp.addElement(new Double(getEnergyBalance()[2])); //efficacité [5]

}

else if(type.equals("subst")){

Corps pt=getCorps(nomType);

if(pt!=null){

vProp=pt.getSubstProperties();

}

}

else if(type.equals("point")){

PointCorps pt=getPoint(nomType);

if(pt!=null){

vProp.addElement(pt.lecorps);//Substance [0]

vProp.addElement(pt.lecorps.getNom());//Substance name [1]

vProp.addElement(new Double(pt.getT()));//Temperature [2]

vProp.addElement(new Double(pt.getP()));//Pressure [3]

vProp.addElement(new Double(pt.getXx()));//Quality [4]

vProp.addElement(new Double(pt.getV()));//Volume [5]

vProp.addElement(new Double(pt.getU()));//Internal energy [6]

vProp.addElement(new Double(pt.getH()));//Enthalpy [7]

vProp.addElement(new Double(pt.getS()));//Entropy [8]

String setTsat="set_Tsat="+Util.aff_b(pt.JCheckSetTsat.isSelected());

vProp.addElement(setTsat);//setTsat [9]

vProp.addElement(new Double(pt.dTsat_value.getValue()));//Dtsat [10]

Thermoptim reference manual Volume 3 61

String setpsat="set_psat="+Util.aff_b(pt.JCheckSetPsat.isSelected());

vProp.addElement(setpsat);//setpsat [11]

//wet gas values

vProp.addElement(new Double(pt.w_value.getValue()));//specific humidity [12]

vProp.addElement(new Double(pt.epsi_value.getValue()));//relative humidity [13]

vProp.addElement(new Double(pt.qprime_value.getValue()));//specific enthalpy [14]

vProp.addElement(new Double(pt.tprime_value.getValue()));//adiabatic temperature [15]

vProp.addElement(new Double(pt.tr_value.getValue()));//dew point temperature [16]

vProp.addElement(new Double(pt.v_spec_value.getValue()));//specific volume [17]

vProp.addElement(new Double(pt.cond_value.getValue()));//condensates [18]

vProp.addElement(new Double(pt.lecorps.M_sec));//Dry gas molar mass [19]

vProp.addElement(new Double(pt.xhprime_value.getValue()));//specific exergy [20]

vProp.addElement("dummy");//réserved if necessary for wet gases [21]

//pressure setting

if(pt.JCheckPvalue.isSelected()){

PointCorps pt2=(PointCorps)pt;

vProp.addElement("pressureSet="+pt2.thePres.getName());//set pressure [22]

vProp.addElement(new Double(pt2.pressCorrFact_value.getValue()));//correction factor [23]

}

else {

vProp.addElement("pressureSet=");// [22]

vProp.addElement(new Double(1.));// [23]

}

}

}

else if(type.equals("process")){

Transfo tf=getTransfo(nomType);

vProp.addElement(tf.getType());//[0]

if(tf!=null){

vProp.addElement(tf.getPointAmont().getName());// [1]

vProp.addElement(tf.getPointAval().getName());// [2]

vProp.addElement(new Double(tf.getFlow()));//flow rate [3]

vProp.addElement(new Double(tf.DeltaH));//Enthalpy [4]

vProp.addElement(tf.ener_type_value.getText());//Energy type [5]

String direct="calcDirect="+Util.aff_b(tf.IcalcDirect);

vProp.addElement(direct);//true if direct calculation [6]

String ouvert="openSyst="+Util.aff_b(tf.JCheckOuvert.isSelected());

vProp.addElement(ouvert);//true for open system [7]

String setflow="setFlow="+Util.aff_b(tf.JCheckSetFlow.isSelected());

vProp.addElement(setflow);//true for set flow [8]

Thermoptim reference manual Volume 3 62

String inletProcess="null";

if(tf.isInletStrConnected())inletProcess=tf.getTransfoAmontName();//inlet process name (if exits)

vProp.addElement(inletProcess);// [9]

String outletProcess="null";

if(tf.isOutletStrConnected())outletProcess=tf.getTransfoAvalName();//outlet process name (if exits)

vProp.addElement(outletProcess);// [10]

if(tf instanceof ComprExpan){

ComprExpan cb=(ComprExpan)tf;

vProp.addElement(new Double(cb.rendIs));// rendement isentropique [11]

vProp.addElement(new Double(cb.Q_value.getValue()));// chaleur apportée (si non adiabatique) [12]

}

if(tf instanceof Combustion){

Combustion cb=(Combustion)tf;

String fuel="null";

if(cb.getFuel()!=null)fuel=cb.getFuel().getName();

vProp.addElement(fuel);// [11]

vProp.addElement(new Double(cb.lambda_value.getValue()));//lambda [12]

vProp.addElement(new Double(cb.Tfluegas));//combustion temperature [13]

vProp.addElement(new Double(cb.tfig_value.getValue()));//quenching temperature [14]

vProp.addElement(new Double(cb.t_diss_value.getValue()));//dissociation rate [15]

String calcLambda="calcLambda="+Util.aff_b(cb.JCheckCalcLambda.isSelected());

vProp.addElement(calcLambda);//true if calculate lambda set [16]

String calcT="calcT="+Util.aff_b(cb.JCheckCalcT.isSelected());

vProp.addElement(calcT);//true if calculate T set [17]

String setFuelFlow="setFuelFlow="+Util.aff_b(cb.JCheckFuelFlow.isSelected());

vProp.addElement(setFuelFlow);//true if calculate with set fuel flow [18]

String dissoc="setDissoc="+Util.aff_b(cb.Check_dissoc.isSelected());

vProp.addElement(dissoc);//true if dissociation set [19]

String premix="setPremix="+Util.aff_b(cb.JCheckPremix.isSelected());

vProp.addElement(premix);//true if premix set [20]

String setV="setV="+Util.aff_b(cb.JChecksetV.isSelected());

vProp.addElement(setV);//true if set volume [21]

String setP="setP="+Util.aff_b(cb.JChecksetP.isSelected());

vProp.addElement(setP);//true if set pressure [22]

String setT="setT="+Util.aff_b(cb.JChecksetT.isSelected());

vProp.addElement(setT);//true if set temperature [23]

vProp.addElement(new Double(cb.getUsefulEnergy()));//useful energy [24]

}

}

}

Thermoptim reference manual Volume 3 63

else if(type.equals("node")){

Node the_node=getNode(nomType);

if(the_node!=null){

vProp.addElement(the_node.mainProcess.getName());//main process name

vProp.addElement(the_node.getClassType());//node type

vProp.addElement(the_node.getEffNode());//node efficiency

vProp.addElement(Util.aff_b(the_node.isoBaric));//is node isobaric?

vProp.addElement(new Integer(the_node.vBranch.size()));//number of branches

for(int j=0;j<the_node.vBranch.size();j++){

Object[] branch=(Object[])the_node.vBranch.elementAt(j);

Transfo the_process=(Transfo)branch[0];

vProp.addElement(the_process.getName());//branch process name

}

}

}

else if(type.equals("heatEx")){

HeatExDemo hX=getHX(nomType);

if(hX!=null){

String coldFluid="",hotFluid="";

if(hX instanceof ThermoCoupler){

ThermoCoupler tc=(ThermoCoupler)hX;

coldFluid=tc.getHcName();

hotFluid=tc.getExchange().getName();

}

else {

coldFluid=hX.getColdFluid().getName();

hotFluid=hX.getHotFluid().getName();

}

vProp.addElement(hotFluid);//hot fluid process name

vProp.addElement(coldFluid);//cold fluid process name

vProp.addElement(hX.getHxType());//heat exchanger type (counterflow, parallel flow...)

vProp.addElement(Util.aff_b(hX.JCheckTceImp.isSelected()));//set Tce

vProp.addElement(Util.aff_b(hX.JCheckTcsImp.isSelected()));//set Tcs

vProp.addElement(Util.aff_b(hX.JCheckMcImp.isSelected()));//set mc

vProp.addElement(Util.aff_b(hX.JCheckTfeImp.isSelected()));//set Tfe

vProp.addElement(Util.aff_b(hX.JCheckTfsImp.isSelected()));//set Tfs

vProp.addElement(Util.aff_b(hX.JCheckMfImp.isSelected()));//set mf

vProp.addElement(Util.aff_b(hX.JCheckMinPinch.isSelected()));//set minimum pinch

vProp.addElement(Util.aff_b(hX.JCheckSetEff.isSelected()));//set efficiency

vProp.addElement(Util.aff_b(hX.IcalcDirect));//set direct calculation (not used I think)

Thermoptim reference manual Volume 3 64

vProp.addElement(Util.aff_b(hX.JCheckDesign.isSelected()));//set design mode

vProp.addElement(new Double(hX.R));//R value

vProp.addElement(new Double(hX.NUT));//NUT value

vProp.addElement(new Double(hX.UA));//UA value

vProp.addElement(new Double(hX.DTML));//DTML value

vProp.addElement(new Double(hX.epsi_value.getValue()));//efficiency value

vProp.addElement(new Double(hX.DTmin_value.getValue()));//pinch value

}

}

return vProp;

}

Method updatePoint() of Projet
/**

met à jour un point, avec recalcul éventuel

valable pour calculs humides

<p>

updates a point, possibly with recalculation

valid for moist gas calculations

/

public void updatePoint(Vector properties){//profondément modifié en 2018 pour version 2.8

String nomPoint=(String)properties.elementAt(0);

// System.out.println("properties.size() "+properties.size());//properties.size()

PointCorps point=getPoint(nomPoint);

if(point!=null){

String test=(String)properties.elementAt(1);

boolean updateT=Util.lit_b(test);

String value=(String)properties.elementAt(2);

double T=Util.lit_d(value);

test=(String)properties.elementAt(3);

boolean updateP=Util.lit_b(test);

value=(String)properties.elementAt(4);

double P=Util.lit_d(value);

test=(String)properties.elementAt(5);

boolean updateX=Util.lit_b(test);

value=(String)properties.elementAt(6);

double x=Util.lit_d(value);

//calculs a effectuer dans le cas general

if(updateT)point.setT(T);

if(updateP){

if(point.open_syst)point.setP(P);

Thermoptim reference manual Volume 3 65

else {

point.setV(P);

point.calcPoint();

}

}

if(updateX)point.setX(x);

point.CalculeUnPoint();

//pour melanges humides

if(properties.size()>7){//modRG 2018

test=(String)properties.elementAt(7);

boolean melHum=Util.lit_b(test);

if(melHum){

if(point.lecorps.typeCorps==4){//modRG 01/06

String task=(String)properties.elementAt(8);

// System.out.println("task "+task);

// Attention : le fluide chaud ne se refroidit

value=(String)properties.elementAt(9);

if(task.equals("setW and calculate all")){//sets w and calculates moist properties

double w=Util.lit_d(value);

point.setW(w);

point.calcHum();

}

if(task.equals("setW and calculate q'")){//sets w and calculates moist properties except t'

double w=Util.lit_d(value);

point.setW(w);

point.calcQprime(false);//modRG 08/06

// System.out.println("epsi "+point.epsi_value.getValue()+" q' "+point.qprime_value.getValue());

}

if(task.equals("setEpsi")){//sets epsilon

double epsi=Util.lit_d(value);

point.setEpsi(epsi);

point.impHumRel();

}

if(task.equals("setEpsi and calculate")){//sets epsilon and calculates moist properties

double epsi=Util.lit_d(value);

point.setEpsi(epsi);

point.impHumRel();

point.calcQprime(false);//modRG 08/06

}

if(task.equals("calcWsat")){//calculates saturation properties and moist properties except t'

Thermoptim reference manual Volume 3 66

T=Util.lit_d(value);

double wsat=point.wsat(T);

point.setW(wsat);

point.calcQprime(false);//modRG 08/06

}

if(task.equals("modHum")){//modifies the gas composition, setting the gas humidity to WPoint

point.modGasHum(false);

}

if(task.equals("setGasHum")){//sets the gas humidity to w//modRG 01/06

double w=Util.lit_d(value);

point.setGasHum(w);

}

}

else{//modRG 01/06 (modifier la ressource)

String mess="Watch out! point "+point.getName()+"'s substance is not a compound gas.\nYou cannot use it for wet gas
calculations.";

JOptionPane.showMessageDialog(this,mess);

}

}

}

if((properties.size()>10)&&(properties.size()<=12)){//mise a jour du facteur de correction d'une pression imposee

test=(String)properties.elementAt(10);

boolean updateCorrFact=Util.lit_b(test);

if(updateCorrFact){//

value=(String)properties.elementAt(11);

double corr=Util.lit_d(value);

point.pressCorrFact_value.setValue(corr);

}

}

if(properties.size()>12){//mise a jour du sous-refroidissement

test=(String)properties.elementAt(12);

boolean updateCorrFact=Util.lit_b(test);

// System.out.println("updateCorrFact.P "+test);//properties.size()

if(updateCorrFact){//

value=(String)properties.elementAt(13);

double corr=Util.lit_d(value);

point.dTsat_value.setValue(corr);

// System.out.println("dTsat_value.P "+corr);

}

}

}

Thermoptim reference manual Volume 3 67

}

Method getSubstProperties() of Corps
/**

donne les fonctions d'état du substance

<p>

gives the substance state functions

@return Vector

<p>

do not override

/

public Vector getSubstProperties(){

Vector vProp=new Vector();

vProp.addElement(new Double(T));//Temperature

vProp.addElement(new Double(P));//Pressure

vProp.addElement(new Double(xx));//Quality

vProp.addElement(new Double(V));//Volume

vProp.addElement(new Double(U));//Internal energy

vProp.addElement(new Double(H));//Enthalpy

vProp.addElement(new Double(S));//Entropy

vProp.addElement(new Double(M));//Molar mass

vProp.addElement(new Integer(typeCorps));//Substance type

vProp.addElement(new Double(M_sec));//Dry gas molar mass [9]

vProp.addElement(new Double(TC));//Critical temperature [10]

vProp.addElement(new Double(PC));//Critical pressure [11]

vProp.addElement(new Double(VC));//Critical volume [12]

vProp.addElement(new Double(getChemicalExergy()));//Chemical exergy [13]

return vProp;

}

Method getExternalClassInstances() of Projet
/**

Provides the external class instances

@return a Vector containing the instances and their type

/

public Vector getExternalClassInstances(){

Vector vInstances=new Vector();

Primtype pt;

int nbProcess=vProcess.size();

for(int i=0;i<nbProcess;i++){

Thermoptim reference manual Volume 3 68

pt=(Primtype)vProcess.elementAt(i);

if(pt instanceof TransfoExterne){

Object[] obj=new Object[6];

TransfoExterne te=(TransfoExterne)pt;

obj[0]="process";

obj[1]=te.cType.externalInstance;//instance de la classe externe

obj[2]=te.getName();

obj[3]=te.cType.externalInstance.getType();//type de la classe externe

obj[4]=te.getPointAmont().getName();

obj[5]=te.getPointAval().getName();

vInstances.addElement(obj);

}

}

int nbNode=vNode.size();

for(int i=0;i<nbNode;i++){

pt=(Primtype)vNode.elementAt(i);

if((pt instanceof MixerExterne)||(pt instanceof DividerExterne)){

Node nd=(Node)pt;

Object[] obj=new Object[6];

obj[0]="node";

obj[1]=nd.cType.externalInstance;//instance de la classe externe

obj[2]=nd.getName();

obj[3]=nd.cType.externalInstance.getType();//type de la classe externe

obj[4]=nd.getMainProcess().getName();

obj[5]=new Integer(nd.getBranches().size());

vInstances.addElement(obj);

}

}

return vInstances;

}

Method updateProcess() of Projet
/**

met à jour une transfo

<p>

updates a process

/

public void updateProcess(Vector properties){

String nomTransfo=(String)properties.elementAt(0);//getName()

Transfo trsf=getTransfo(nomTransfo);

Thermoptim reference manual Volume 3 69

if(trsf!=null){

String typeTransfo=(String)properties.elementAt(1);//getClassType()

String test=(String)properties.elementAt(2);

boolean updateFlow=Util.lit_b(test);

Double y=(Double)properties.elementAt(3);//getFlow()

double flowRate=y.doubleValue();

if(updateFlow)trsf.setFlow(flowRate);

test=(String)properties.elementAt(4);

boolean reCalculate=Util.lit_b(test);

test=(String)properties.elementAt(5);

trsf.setSetFlow(Util.lit_b(test));

if(typeTransfo.equals("Compression")){

Compression ce=(Compression)trsf;

test=(String)properties.elementAt(6);

boolean updateEta=Util.lit_b(test);

y=(Double)properties.elementAt(7);//getIsentropicEfficiency()

if(updateEta)ce.setIsentropicEfficiency(y.doubleValue());

if(properties.size()>8){

test=(String)properties.elementAt(8);

boolean updatePressRatio=Util.lit_b(test);

y=(Double)properties.elementAt(9);//getIsentropicEfficiency()

if(updatePressRatio)ce.setPressureRatio(y.doubleValue());

}

}

if(typeTransfo.equals("Expansion")){

Expansion ce=(Expansion)trsf;

test=(String)properties.elementAt(6);

boolean updateEta=Util.lit_b(test);

y=(Double)properties.elementAt(7);//getIsentropicEfficiency()

if(updateEta)ce.setIsentropicEfficiency(y.doubleValue());

if(properties.size()>8){

test=(String)properties.elementAt(8);

boolean updatePressRatio=Util.lit_b(test);

y=(Double)properties.elementAt(9);//getIsentropicEfficiency()

if(updatePressRatio)ce.setPressureRatio(y.doubleValue());

}

}

if(typeTransfo.equals("Combustion")){

Combustion ce=(Combustion)trsf;

test=(String)properties.elementAt(6);

Thermoptim reference manual Volume 3 70

boolean updateTout=Util.lit_b(test);

y=(Double)properties.elementAt(7);//getOutletTemperature()

if(updateTout)ce.setOutletTemperature(y.doubleValue());

if(properties.size()>8){

test=(String)properties.elementAt(8);

boolean updateLambda=Util.lit_b(test);

y=(Double)properties.elementAt(9);//

if(updateLambda)ce.setLambda(y.doubleValue());

}

if(properties.size()>10){

test=(String)properties.elementAt(10);

boolean updateEta=Util.lit_b(test);

y=(Double)properties.elementAt(11);//

if(updateEta)ce.setThermalEfficiency(y.doubleValue());

}

}

if(reCalculate)trsf.Calculate();

}

}

Method updateNode() of Projet
/**

met à jour un noeud

<p>

updates a node

/

public void updateNode(Vector properties){//modRG 2018

String name=(String)properties.elementAt(0);//getName()

Node nd=getNode(name);

String test=(String)properties.elementAt(1);

boolean reCalculate=Util.lit_b(test);

if(nd instanceof Separator){//on passe la valeur true or false en 3ème argument, et la valeur de l'efficacité de séchage en 4ème

Separator sp=(Separator)nd;

test=(String)properties.elementAt(2);

boolean updateEpsi=Util.lit_b(test);

Double y=(Double)properties.elementAt(3);

double epsi=y.doubleValue();

if(updateEpsi)sp.setEfficiency(epsi);

}

if(nd instanceof Divider){//modifié en 2018 //modRG 2018

Thermoptim reference manual Volume 3 71

//on passe la valeur true or false pour updateFactor en 3ème argument,

//le nom de la transfo dont on souhaite changer le facteur de débit en 4ème

//et la valeur du facteur de débit en 5ème

Divider div=(Divider)nd;

if(properties.size()==5){

test=(String)properties.elementAt(2);

boolean updateFactor=Util.lit_b(test);

if(updateFactor){

reCalculate=false;//le diviseur ne doit alors être recalculé que quand tous les facteurs de débit ont été mis à jour

String branchName=(String)properties.elementAt(3);//le recalcul est effectué par un appel sans mise à jour des facteurs de débit

String flowFactor=(String)properties.elementAt(4);

div.setupFlowFactor(branchName, flowFactor);

}

}

}

if(reCalculate)nd.Calculate();

}

Method updateHX() of Projet
/**

met à jour un échangeur de chaleur

<p>

updates a heat exchanger

/

public void updateHX(Vector properties){

String name=(String)properties.elementAt(0);//getName()

HeatExDemo hx=getHX(name);

String test=(String)properties.elementAt(1);

boolean reCalculate=Util.lit_b(test);

test=(String)properties.elementAt(2);

boolean updateUA=Util.lit_b(test);

Double y=(Double)properties.elementAt(3);

double UA=y.doubleValue();

if(updateUA)hx.setUA(UA);

test=(String)properties.elementAt(4);

boolean updateEpsi=Util.lit_b(test);

y=(Double)properties.elementAt(5);

if(updateEpsi)hx.setEpsi(y.doubleValue());

test=(String)properties.elementAt(6);

boolean updateDTmin=Util.lit_b(test);

Thermoptim reference manual Volume 3 72

y=(Double)properties.elementAt(7);

if(updateDTmin)hx.setDTmin(y.doubleValue());

test=(String)properties.elementAt(8);

boolean updateCalcMode=Util.lit_b(test);

test=(String)properties.elementAt(9);

boolean calcMode=Util.lit_b(test);

if(updateCalcMode)hx.setCalcMode(calcMode);

if(reCalculate)hx.Calculate();

}

Method updateSetPressure() of Projet
/**

met à jour une pression imposée et recalcule la pression des points

les facteurs de correction de ces derniers sont modifiables par updatePoint()

<p>

updates a set pressure and recalculates the point pressures

their correction factors can be updated by updatePoint()

/

public void updateSetPressure(Vector properties){//modRG 2008

String nomPres=(String)properties.elementAt(0);//getName()

PresSetValue thePres=getPresSet(nomPres);

if(thePres!=null){//le false signifie que la pression est changée, mais sans notification, pour éviter un recalcul complet

Double y=(Double)properties.elementAt(1);

double value=y.doubleValue();

thePres.setValue(value);

thePres.modifyPressures(false);

}

}

Method getSubstProperties() of Corps
/**

donne les fonctions d'état du corps

<p>

gives the substance state functions

@return Vector

<p>

do not override

/

public Vector getSubstProperties(){

Vector vProp=new Vector();

Thermoptim reference manual Volume 3 73

vProp.addElement(new Double(T));//Temperature [0]

vProp.addElement(new Double(P));//Pressure [1]

vProp.addElement(new Double(xx));//Quality [2]

vProp.addElement(new Double(V));//Volume [3]

vProp.addElement(new Double(U));//Internal energy [4]

vProp.addElement(new Double(H));//Enthalpy [5]

vProp.addElement(new Double(S));//Entropy [6]

vProp.addElement(new Double(M));//Molar mass [7]

vProp.addElement(new Integer(typeCorps));//Substance type [8]

vProp.addElement(new Double(M_sec));//Dry gas molar mass [9]

vProp.addElement(new Double(TC));//Critical temperature [10]

vProp.addElement(new Double(PC));//Critical pressure [11]

vProp.addElement(new Double(VC));//Critical volume [12]

vProp.addElement(new Double(getChemicalExergy()));//Chemical exergy [13]

return vProp;

}

Method getExternalClassInstances() of Projet
/**

Provides the external class instances

@return a Vector containing the instances and their type

/

public Vector getExternalClassInstances(){

Vector vInstances=new Vector();

Primtype pt;

int nbProcess=vProcess.size();

for(int i=0;i<nbProcess;i++){

pt=(Primtype)vProcess.elementAt(i);

if(pt instanceof TransfoExterne){

Object[] obj=new Object[6];

TransfoExterne te=(TransfoExterne)pt;

obj[0]="process";

obj[1]=te.cType.externalInstance;//instance de la classe externe

obj[2]=te.getName();

obj[3]=te.cType.externalInstance.getType();//type de la classe externe

obj[4]=te.getPointAmont().getName();

obj[5]=te.getPointAval().getName();

vInstances.addElement(obj);

}

Thermoptim reference manual Volume 3 74

}

int nbNode=vNode.size();

for(int i=0;i<nbNode;i++){

pt=(Primtype)vNode.elementAt(i);

if((pt instanceof MixerExterne)||(pt instanceof DividerExterne)){

Node nd=(Node)pt;

Object[] obj=new Object[6];

obj[0]="node";

obj[1]=nd.cType.externalInstance;//instance de la classe externe

obj[2]=nd.getName();

obj[3]=nd.cType.externalInstance.getType();//type de la classe externe

obj[4]=nd.getMainProcess().getName();

obj[5]=new Integer(nd.getBranches().size());

vInstances.addElement(obj);

}

}

return vInstances;

}

Method setupChart() of Projet
public void setupChart(Vector properties){

String task=(String)properties.elementAt(0);

String value=(String)properties.elementAt(1);

if(task.equals("openDiag")){

int i=Util.lit_i(value);

setupChart(false);

cm.setupChart(i);

}

else if(task.equals("selectSubstance")&& cm!=null){

Graph graph=cm.getChart();

graph.getDiagIni().setSelectedSubstance(value);

graph.select_vap();

}

else if(task.equals("readCycle")&& cm!=null){

Graph graph=cm.getChart();

graph.litCycle(value,"");

graph.setConnectedCycle();

}

else if(task.equals("unSelectCycle")&& cm!=null){

Graph graph=cm.getChart();

graph.setupCycleManager();

Thermoptim reference manual Volume 3 75

CycleManager cM=graph.getCycleManager();

cM.unSelect(value);

graph.repaint();

}

else if(task.equals("removeCycle")&& cm!=null){

Graph graph=cm.getChart();

graph.setupCycleManager();

CycleManager cM=graph.getCycleManager();

cM.removeCycle(value);

graph.repaint();

}

else if(task.equals("setChartType")&& cm!=null){

Graph graph=cm.getChart();

graph.setChartType(value);

}

}

Annex 3 : utility methods of class Util
Class ExtThopt.Util provides a number of utility methods to facilitate the programming of external classes:

Display methods

public static String aff_i(int i) : affiche un entier

public static String aff_b(boolean b) : affiche un booléen

public static String aff_d(double d) : affiche un double

public static String aff_d(double d, int dec) : affiche un double avec dec décimales

Conversion methods

public static int lit_i(String s) : lit un entier

public static boolean lit_b(String s) : lit un booléen

public static double lit_d(String s) : lit un double

Methods extracting values from a String

public static String extr_value(String s)

public static String extr_value(String ligne_data, String search)

The first method extracts "3.4" from "value = 3.4", whatever the text to the left of the equal sign. It can be used with a
StringTokeniser separating couples "value = xxx".

The second combines with StringTokeniser separator tab and the previous method, searching for the couple "search = xxx".

Both methods return null in case of failure.

Function inversion methods

public static double dicho_T (Inversable inv, double value,double param, String function, double valMin, double valMax,double
epsilon)

This generic method allows the inversion of a function by dichotomy. The class must implement the Inversable interface, which
requires to define method f_dicho:

Thermoptim reference manual Volume 3 76

public double f_dicho(double x, double param, String function)

value is the objective value for the method returned by f_dicho, the variable x varies between valMin and valMax, epsilon is the
accuracy criterion, and function is a String allowing to identify a particular method in f_dicho:

if (function.equals("P_LiBr"))return getP(x,T);

After 50 iterations, dicho_T returns 0 if no convergence.

Methods for handling a pure gas in a gas composition Vector

public static double molarComp(Vector vComp,String pureGas) : gives the molar fraction of pureGas

public static boolean contains(Vector vComp,String pureGas) : gives true if pureGas exists

public static void updateMolarComp(Vector vComp,String pureGas, double newFractMol) : updates the molar fraction of
pureGas

Annex 4 : TEP ThermoSoft - Java / Delphi Interface – Application
to Thermoptim
(par F. Rivollet)

Ce document explique le principe de passerelle entre TEP ThermoSoft et Thermoptim. Ces deux programmes sont écrits
respectivement en Pascal sous environnement Delphi et en Java. L’objectif est le calcul des propriétés thermodynamiques
nécessaires sous Thermoptim à partir des modèles développés pour TEP ThermoSoft.

Structure de dialogue entre les deux programmes

Le schéma ci-dessous reprend le principe de dialogue entre les deux programmes et les fichiers nécessaire à un calcul.

Fig. 1 : Relations entre les fichiers

La principale difficulté est la compatibilité des fonctions appelées du Java vers le Pascal. Pour ce faire, une librairie spécifique
(TEPThermoSoftJava.dll) permet d’assurer le passage des variables entre les deux entités.

La définition et l’exécution des calculs au sein de TEP ThermoSoft nécessitent :

La routine principale (TEPThermoSoftCalc.dll)

un fichier système (fichier .mel) qui rassemble l’ensemble des propriétés de calcul.

les modèles thermodynamiques écrits sous forme de librairies (.dll) et contenus dans un répertoire spécifique.

Remarque : Les deux fichiers TEPThermoSoftCalc.dll et TEPThermoSoftJava.dll doivent se situer dans le même répertoire.

Exécuter un calcul en java

Définition des méthodes de dialogue avec TEP ThermoSoft

Les méthodes suivantes doivent être définies en Java comme faisant référence à la librairie externe « Delphi2Java.dll ».
Leur fonction et leur syntaxe sont expliquées dans les paragraphes 2.2 à 2.5 et un exemple est donné en 2.6.

public native int InitSession(String RepMODELES);

public native void FermerSession();

public native int ChargerSysteme (String FichierMEL);

public native double Lire(String Symbole);

public native void Ecrire(String Symbole, double valeur);

public native void Calculer(String code);

Chargement/Libération des modèles thermodynamiques en mémoire

Avant tout calcul, la méthode « InitSession » doit être appelée afin d’initialiser l’ensemble des paramètres et de spécifier le
répertoire contenant les modèles thermodynamiques « .dll ».

InitSession(System.getProperty("user.dir")+File.separator+"TEPThermoSoft_DLL"+File.separator);

Thermoptim reference manual Volume 3 77

Cette fonction retourne un entier qui détermine un code d’état :

1. Pas d’erreur

-1 Erreur inconnue

Une fois que les fonctions de calcul ne sont plus nécessaires, il est souhaitable de libérer la mémoire en appelant
« FermerSession »

FermerSession() ;

Définition d’un système

Un « système » représente soit un substance pur, soit un mélange de plusieurs composés. Toutes les informations relatives au
calcul de ses propriétés (Modèles thermodynamiques, valeurs des paramètres de calcul, …), sont regroupées dans un fichier
unique dont l’extension est « .mel ». Ce fichier peut être ouvert avec un simple éditeur de texte. Sa structure reprend celle d’un
fichier « .ini » sous Windows. Cela signifie que des catégories sont définies entre crochets :

[GENERAL]

NOM = Melange

DATE = 25/04/2005

HEURE = 08:17:56

[CPS]

994 AMMONIA

1000 WATER

[ELV]

S CAlpha AlphaMC.dll

S CCPGP CPGP107.dll

// … //

P a(1)

P a(2)

P ALPHA(1)

// .. //

P CP107(2)[0] 33363

P CP107(2)[1] 26790

P P Pa

P Pc(1) 11280005.625 Pa

P Pc(2) 22055007.45 Pa

P PHI|l(1)

// .. //

Au sein de TEP ThermoSoft, tout calcul se réfère à un système donné. Pour cela, il faut, à partir de l’application Java, charger les
paramètres de calcul en mémoire à l’aide de la fonction « ChargerSysteme » en spécifiant le fichier système voulu :

ChargerCalcul(System.getProperty("user.dir")+File.separator+"mixtures"+File.separator+"TEPThermoSoft_MEL"+File.separator+sele

Cette méthode retourne un entier qui spécifie le numéro du mélange chargé en mémoire.

De plus, ce numéro, s’il est négatif, indique une erreur lors du chargement du fichier. Pour le moment les codes d’erreur sont les
suivants :

1 Erreur inconnue

2 Fichier introuvable

Thermoptim reference manual Volume 3 78

3 Aucun composé défini dans le fichier.

Modifier / Lire des variables de TEP ThermoSoft

Une fois un fichier de mélange chargé en mémoire, deux méthodes ont été écrites pour permettre de modifier et de lire les valeurs
des variables se référant au système. Toute variable intervenant dans les calculs peut être modifiée ou lue. Pour cela il suffit de
respecter la typographie suivante :

SYMB(cps)[vecteur]|phase

SYMB symbole de la variable à modifier (Ex. T : Température – Cf.)

cps composé ou interaction entre composés (Ex. (1) , (2), (1_2)). La numérotation des composés commence à 1.

vecteur numéro du vecteur (ex. [0], [1], …). La numérotation des vecteurs commence à 0.

phase lors de données multiphasiques, la barre | suivi d’une lettre (l ou v) permet de définir la phase recherchée (ex. |l ou |v).

Par exemple, la lecture de la température peut se faire par la méthode :

double temperature = Lire("T");

De même la modification du premier paramètre de la fonction Alpha de Mathias-Copeman pour le composé 2 s’écrit :

Ecrire("MC(2)[0]", 0.152);

Lancer un calcul

Pour lancer un calcul, il suffit d’écrire la valeur des paramètres de calcul au moyen de la méthode « Ecrire » vue précédemment,
puis de lancer le calcul par la méthode « Calculer » :

Calculer("Tx");

La méthode « Calculer » attend un paramètre qui définit le type de calcul souhaité (cf.) Dans l’exemple ci-dessus, il s’agit d’un
calcul d’équilibre LV en mélange en spécifiant la température et la composition liquide. Ainsi, avant d’exécuter cette fonction il est
nécessaire de bien définir les variables T et x comme par exemple pour un binaire :

Ecrire("T",280);

Ecrire("x(1)",0.1);

Ecrire("x(2)",0.9);

Exemple d’écriture d’un calcul complet

Voici un exemple de lignes de commande permettant un calcul à l’équilibre LV du système « NH3-H2O» défini dans le fichier
système « NH3-H2O.mel » :

InitSession(System.getProperty("user.dir")+File.separator+"TEPThermoSoft_DLL"+File.separator);

//
ChargerSysteme(System.getProperty("user.dir")+File.separator+"mixtures"+File.separator+"TEPThermoSoft_MEL"+File.separator+"
H2O.mel");

//

Ecrire("T",280);

Ecrire("x(1)",0.1);

Ecrire("x(2)",0.9);

//

Calculer("Tx");

//

P = Lire("P");

y[0] = Lire("y(1)");

y[1] = Lire("y(2)");

//

Thermoptim reference manual Volume 3 79

FermerSession() ;

Variables et méthodes de calcul disponibles

Variables classiques

Voici une liste des symboles les plus utilisés dans les méthodes « Lire » et « Ecrire ».

Symbole Unité Description

T K Température

P Pa Pression

x(i) Composition liquide du composé « i »

y(i) Composition gaz du composé « i »

z(i) Composition globale du composé « i »

h, h|l, h|v J/mol Enthalpie

s, s|l, s|v J/mol/K

TauVap Taux de vaporisation (= -1 lors d’un calcul ELV Px, Tx, Ty ou Py).

h0 J/mol Enthalpie de référence.

s0 J/mol Entropie de référence

Mw(i) kg/mol Masse molaire du composé « i »

Méthodes de calcul

Voici une liste des symboles des méthodes disponibles (elle sera complétée au fur et à mesure des besoins). MEL concerne les
mélanges et CP, les corps purs.

Symbole
Type de

calcul
Description

Tx MEL Calcul à l’équilibre LV en spécifiant la température et la composition liquide.

Ty MEL Calcul à l’équilibre LV en spécifiant la température et la composition gaz.

Px MEL Calcul à l’équilibre LV en spécifiant la pression et la composition liquide.

Py MEL Calcul à l’équilibre LV en spécifiant la pression et la composition gaz.

PTz MEL
Calcul en spécifiant la composition globale, la pression et la température (données à l’équilibre ou hors équilibre
LV).

Pour le moment la méthode PTz semble pouvoir suffire car valable en substance purs et en mélange (suivant les valeurs de z). De
plus elle est continue à et hors ELV. Ainsi une méthode numérique simple devrait permettre d’estimer les valeurs à h et s constant.

Annex 5 : UML Diagrams of external classes

Substance class diagram

https://www.notion.so/T-80ed711d9f1b473b82d43a761cb69ed4
https://www.notion.so/P-9997b9a5e17b40308320f347ecb079d8
https://www.notion.so/x-i-13a915902ea64ba9a3e78b078a26c58b
https://www.notion.so/y-i-658e273380a149f9825b5d8549d71840
https://www.notion.so/z-i-e4ed4984a53840eda459a35ab66883a7
https://www.notion.so/h-h-l-h-v-f2522f6f22604b77b8e09affebf7887c
https://www.notion.so/s-s-l-s-v-f7ee5b1db38d4ad5bfb2a68580a02189
https://www.notion.so/TauVap-3935360dfd4b42fdb9ae9f63b96fe076
https://www.notion.so/h0-15c76ed60c394ff2b30586c8f7bc0cc0
https://www.notion.so/s0-a952a4914a7b40afbefc8ba5d52d5a91
https://www.notion.so/Mw-i-1c1e00e3d8d84ece841611719fb4217e
https://www.notion.so/Tx-e580e80be63744b4a7df7a4247138736
https://www.notion.so/Ty-4f0b0a04a11146feacb9d994fb579760
https://www.notion.so/Px-ecb058d47ef84c05828407d1acd115e7
https://www.notion.so/Py-c5eac0c83b664eabb824e284dffa0a73
https://www.notion.so/PTz-8f84e9f03b924078895e87db16520b92

Thermoptim reference manual Volume 3 80

External component class diagram

Thermoptim reference manual Volume 3 81

