

THE THERMOPTIM®

USE OF THE

DATA EXTRACTION UTILITY

FOR POST-PROCESSING

VERSION JAVA 1.6

© R. GICQUEL JANUARY 2026

CONTENTS

USE OF THE DATA EXTRACTION UTILITY FOR POST-PROCESSING	3
DEFINITION OF THE VALUES TO BE EXTRACTED	4
POST-PROCESSING	4

© R. GICQUEL 1997 - 2026. Any full or partial representation or reproduction made without permission is unlawful and constitutes an infringement punishable under the French Intellectual Property Code.

Warning: The information contained in this document may be modified without prior notice and shall under no circumstances be considered as contractual.

Use of the data extraction utility for post-processing

For a given Thermoptim diagram file, there can be many possible project files corresponding to different parameter settings of the model. Starting from the Standard version of the software package, there is a function that allows sensitivity studies to be carried out, but it only keeps track of a very small number of parameters.

Let us look at the structure of Thermoptim project files (Figure 1): the various settings are placed in text fields separated by tab characters, so that each of them appears in a well-defined cell if the file is opened in a spreadsheet as if it were a worksheet. As can be seen in Figure 1, each cell contains either a value (the point enthalpies are given in column F, from row 25 to row 29) or an “identifier=value” pair (for example cells J38 and K38, which give the air factor and the combustion end temperature of the combustion chamber).

A	B	C	D	E	F	G	H	I	J	K
12										
13	GAZ COMPOSES		1							
14	Nom du gaz / Compcfraction molairefraction massique									
15										
16	gaz_brule		5							
17	CO2	0.0300102171	0.0461435625							
18	H2O	0.0558075615	0.0361258346							
19	O2	0.146182519	0.163426215							
20	N2	0.759252709	0.743095723							
21	Ar	0.008746993590	0.0122086651							
22										
23	POINTS		5							
24	nom	nom corps	T (°C)	P (bar)	titre	h (kJ/kg)	u (kJ/kg)	V (m ³ /kg)		
25	combustible	gaz_de_Monto	15	20		1-20.52071048-16.0726432	0.0650611450	open_syst=true calc_pT=true	set_Tsat=false	DTsat
26	entrée d'air	air	15	1		1-9.87037072-7.0423588	0.827301151	open_syst=true calc_pT=true	set_Tsat=false	DTsat
27	2 air	494.07412108		20		1 488.7162350/353.998325790.110138018	open_syst=true calc_pT=true	set_Tsat=false	DTsat	
28	3 gaz_brule	1150		20		1 1295.047922968.2246053/0.206691821	open_syst=true calc_pT=true	set_Tsat=false	DTsat	
29	4 gaz_brule	494.00067899		1		1 505.5396007369.264929362.22834995	open_syst=true calc_pT=true	set_Tsat=false	DTsat	
30										
31	TRANSFOS		6							
32	nom	point amont	point aval	type	m ?H	type_ener	débit			
33	sortie gaz	4	4	Exchan	0	other	1.01701206	open_syst=true set flow=false	calc_direct=false min pinch DT=0	pinch
34	entrée d'air	entrée d'air	entrée d'air	Exchan	0	other	1	open_syst=true set flow=false	calc_direct=false min pinch DT=0	pinch
35	combustible	combustible	combustible	Exchan	0	other	0.017012060	open_syst=true set flow=false	calc_direct=false min pinch DT=0	pinch
36	compresseur	entrée d'air		2	Compre	498.59	useful	1 open_syst=true set flow=false	rend=0.85	isent=false
37	turbine		3	4	Expans	-802.94	useful	1.01701206	open_syst=true set flow=false	rend=0.85
38	chambre de combust		2	3	Combus	828.36	purchased	1.017012	open_syst=true set flow=false	lambda=3.5241 Tfluegas=1423.15 disso

Figure 1: Extract from a Thermoptim project file

A data extraction utility called DataExtractor-en has been developed in Java to enable relatively easy post-processing of a set of project files relating to the same model and therefore with an identical or similar structure (Figure 2). It allows project files to be loaded and then the values chosen by the user to be extracted from the cells of the different files, whether they are simple values or “identifier=value” pairs. Its use is explained below.

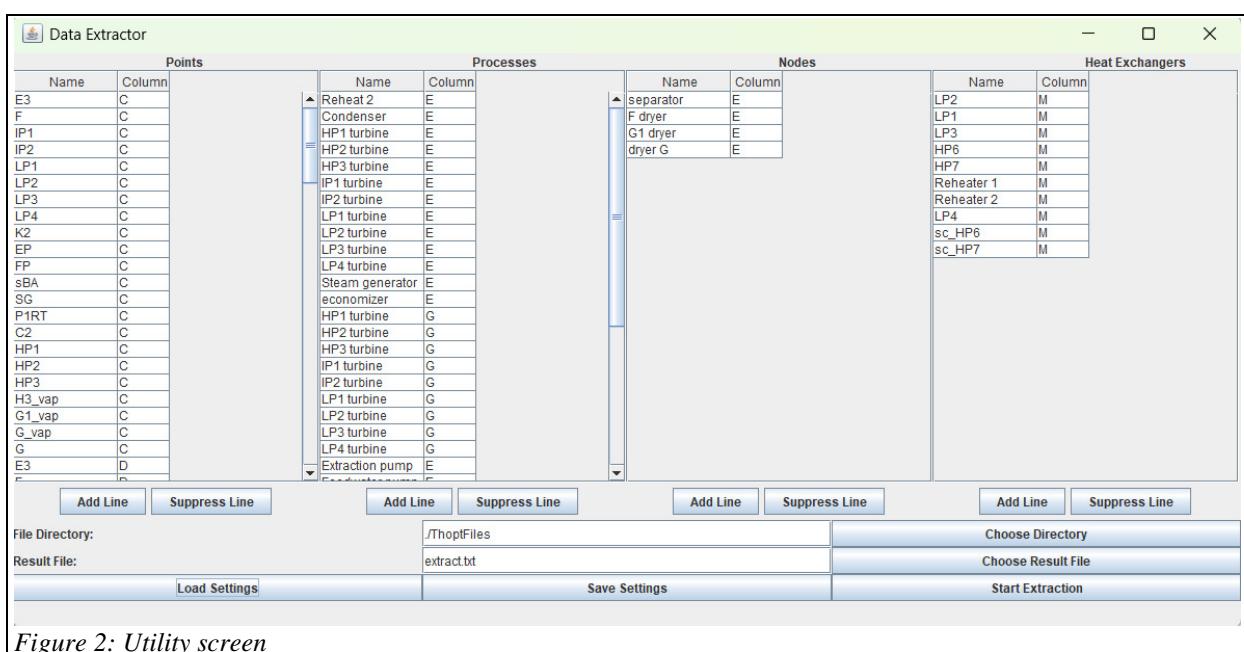


Figure 2: Utility screen

Definition of the values to be extracted

The utility contains four main tables corresponding to points, processes, nodes and heat exchangers. Each table has two columns: the first gives the names of the elements, and the second the column of the value to be extracted. In Figure 2, for the points, the first table shows that the values from column C (temperature) are to be extracted for the listed points, then from the last complete line, those from column D (the pressure). For the processes, columns E and G (enthalpy involved and flow rate), and so on.

At the bottom of each table, two buttons allow a row to be added or deleted. To edit a row, simply change the desired value.

At the bottom of the window are the buttons and fields used to select the working directory, the extraction file and to modify the parameter file, whose default name is “param.txt”.

The working directory is the one where all the files from which you want to extract data are placed.

Finally, the button in the bottom-right corner is used to start the extraction.

The parameter file can, as just described, be built from the utility window, but it is a text file that can also be created manually in a text editor or a spreadsheet.

Figure 3 shows the end of the parameter file that was loaded in Figure 2. It contains the names of the elements and their column, preceded by an identifier specifying their type, with a comma as the separator.

140	PROCESSES,LP1 turbine,J
141	PROCESSES,LP2 turbine,J
142	PROCESSES,LP3 turbine,J
143	PROCESSES,LP4 turbine,J
144	PROCESSES,Extraction pump,J
145	PROCESSES,Feedwater pump,J
146	PROCESSES,LP2 pump,E
147	PROCESSES,LP3 pump,E
148	PROCESSES,LP4 pump,E
149	NODES,separator,E
150	NODES,F dryer,E
151	NODES,G1 dryer,E
152	NODES,dryer G,E
153	HEAT EXCHANGERS,LP2,M
154	HEAT EXCHANGERS,LP1,M
155	HEAT EXCHANGERS,LP3,M
156	HEAT EXCHANGERS,HP6,M
157	HEAT EXCHANGERS,HP7,M
158	HEAT EXCHANGERS,Reheater 1,M
159	HEAT EXCHANGERS,Reheater 2,M
160	HEAT EXCHANGERS,LP4,M
161	HEAT EXCHANGERS,sc_HP6,M
162	HEAT EXCHANGERS,sc_HP7,M
163	

Figure 3: Parameter file

Post-processing

The extraction file is a text file structured like a spreadsheet, with a first column containing the names of the elements, followed by as many columns as there are files processed.

The first row contains the names of the project files processed, and each subsequent row starts with the name of the variable to which is concatenated the name of the variable if it is standard, or otherwise the column identifier, followed by all the values found, separated by tab characters.

After all these data, the values are grouped in the following rows by type (temperatures, pressures, etc.) to make them easier to use later in spreadsheets.

The decimal separator used in the result file is the dot “.”. It may be necessary to replace it with the separator used by your computer system.