
1

T H E R M O P T I M ®

 CALCULATION OF MOIST GAS

FROM

EXTERNAL CLASSES

VERSION JAVA 1.5

© R. GICQUEL MARCH 2007

2

CONTENTS

CALCULATIONS OF MOIST GAS IN THERMOPTIM .. 3

INTRODUCTION ... 3
METHODS AVAILABLE IN THE EXTERNAL CLASSES ... 4

Search of a point humidity ... 4
Updating a point moist properties ... 4

DISPLAY IN SPECIFIC UNITS ... 6
USAGE EXAMPLE: SATURATOR MODEL ... 6
APPENDIX: PROJECT METHODS ACCESSIBLE FROM THE EXTERNAL CLASSES 9

© R. GICQUEL 1997 - 2007. Any representation or reproduction in whole or in part without permission
is illegal and constitutes an infringement under the Intellectual Property Code.
Disclaimer: The information contained in this document are subject to change without notice, and have in
no way a contractual nature.

3

C A L C U L A T I O N S O F M O I S T G A S I N T H E R M O P T I M

We will assume in what follows the reader is sufficiently familiar to both the use of external classes and
thermodynamics of moist gas. The definitions, notations and equations are those of Volume 1 of the
book Energy Systems.

INTRODUCTION

We call moist mix, and by abuse of language moist gas, a mixture of a gas that does not condense, which
we call the dry gas, and water that could condense.

Since its inception, Thermoptim has functions for calculating properties of moist gases and points, but
these are generally used for particular calculations, decoupled from standard thermodynamic cycle
calculations, such as for air conditioning treatment. It is for this reason that moist processes have no
symbol in the diagram editor.

We assume in what follows that the reader is sufficiently familiar with both external class use and moist
gas thermodynamics.

For convenience we use the term standard when we refer to Thermoptim environment except moist
calculations.

The standard Thermoptim cycle computing environment and that of moist calculations are not directly
compatible for two reasons:
• following use in moist calculations, the values of thermodynamic functions are generally referred to

the dry gas, whose composition is invariant, whereas the standard calculations performed in
Thermoptim are relative to the actual composition of the gas. The values to which they lead are
called specific, to distinguish them from others;

• furthermore, reference temperatures and pressures not being the same in both environments, it is
necessary to do conversions when switching from one to another.

However, a number of thermodynamic cycles involve changes in gas moisture, and it was unfortunate
not to be able to model them easily with Thermoptim. That is why the Thermoptim functions for
calculating properties of moist gases and points have been made available from external classes. This
section explains how to use them.

A moist gas can be represented in Thermoptim in two equivalent ways, either directly as a compound
substance comprising at least two components: either H2O and another gas, pure or compound, or as a
dry gas of known specific humidity. The first way has the advantage that the composition of moist gas is
available at any time. However, it implies, for the same dry gas, creating a new substance for each value
of moist moisture. The second presentation is itself much more concise, since it only uses the invariant
gas and the humidity value. This is why it is used by moist gas calculation functions, while the first is the
rule in the standard Thermoptim cycle computing environment.

Let us recall that we call relative humidity ε the ratio of the partial pressure of water vapor divided by
its saturation vapor pressure at the temperature of the mixture, and that, by definition, index gs
corresponding to the dry gas, absolute or specific humidity w is equal to the ratio of the mass of water
contained in a given volume of moist mixture to the mass of dry gas contained in this volume, namely:

w =
gs

OH
y

y 2 =
gsgs

OHOH
xM
xM 22 =

18 xH2O
Mgs (1 - xH2O)

This relationship allows the calculation of w when we know the moist gas composition.

4

METHODS AVAILABLE IN THE EXTERNAL CLASSES

Generally, moist gas calculations are made (from external classes) at one point, but a method allows to
directly modify the humidity of a gas. The gas humidity is entered giving either its absolute humidity w
or its relative humidity ε. Both methods are defined in class ExtProcess, of which derive all external
processes and nodes.
Method updatepoint("pointName", ...) can do moist calculations while method
getPointProperties("pointName") recovers in addition to the standard properties (P, T, h, s ...), a point
moist properties with the following values: Wpoint for absolute humidity w, Epsipoint for relative
humidity ε, Qprimepoint for specific enthalpy q', Tprimepoint for adiabatic temperature t' (°C), Trpoint
for dew temperature tr (°C), VPrimepoint for specific volume vs, Condpoint for condensates, and
M_secpoint for molar mass of dry gas.

 Search of a point humidity

When the point state has been calculated, w is known and method getPointproperties("nomPoint")
allows to access it directly.

When the gas composition is determined by programming, it may be necessary to recalculate w, which
can be done by the following formula:

// w =
gsgs

OHOH
xM
xM 22

 / / Calculate the gas absolute humidity

double inlet_w=18.01528*fractH2OFuel/fuelM/(1-fractH2OFuel);

Updating a point moist properties

Method updatepoint(String name, boolean updateT, double T, boolean updateP, double P updateX
boolean, double x, boolean melHum, String task, double value) is a generic method for update and
recalculation of a point state variables, which has been generalized to allow for moist calculations:

 public void updatepoint(String name, boolean updateT, double T,
 boolean updateP, double P, boolean updateX, double x,
 boolean melHum, String task, double value){
 String[] args=new String[2];
 Vector vPoint=new Vector();
 vPoint.addElement(name);
 vPoint.addElement(Util.aff_b(updateT));
 vPoint.addElement(Util.aff_d(T));
 vPoint.addElement(Util.aff_b(updateP));
 vPoint.addElement(Util.aff_d(P));
 vPoint.addElement(Util.aff_b(updateX));
 vPoint.addElement(Util.aff_d(x));
 vPoint.addElement(Util.aff_b(melHum));
 vPoint.addElement(task);
 vPoint.addElement(Util.aff_d(value));
 proj.updatePoint(vPoint);

 }

As shown in this code, it builds a Vector and then calls on the Project method updatePoint ().

If boolean melHum is false, the point update is for T, P, or x, depending on whether booleans updateT,
updateP updateX are true or false: this is a standard property update without moist calculations.

If boolean melHum is "true", only moist calculations are made, even if updateT, and updateP updateX
are "true".

5

These calculations are defined by two parameters task and value.

task is a String specifying the type of calculations to perform, and value a double providing the value of
the variable to modify.

1) Calculations without changing the gas composition

The calculations being performed with respect to dry gas, the gas composition is not changed.

Set specific humidity w

If task ="setW and calculate all", Thermoptim sets w (passed in value) and calculates all moist
properties.

When the temperature of a point is high, convergence problems may arise in calculating the wet bulb
temperature t'. To circumvent this difficulty, the setting below only calculates specific enthalpy.

If task ="setW and calculate q'", Thermoptim sets w (passed in value) and calculates all moist properties
except t'.

If task = "calcWsat" Thermoptim calculates wsat and all moist saturation properties except t'.

Set the relative humidity ε

If task = "setEpsi" Thermoptim sets ε (passed in value).

If task = "setEpsi and calculate", Thermoptim sets ε (passed in value) and calculates all moist properties
except t'.

2) Changing the gas composition

2.1 by operating indirectly from a point

Method updatePoint() allows to alter the composition of a gas, with the following settings:

If task = "modHum" Thermoptim changes the composition of the gas so that its moisture equals Wpoint
(there is then no need to pass a value).

If task = "setGasHum" Thermoptim changes the composition of the gas so that its moisture is equal to w
(passed in value).

2.2 by operating directly on the gas

It is also possible to change the humidity of a gas regardless of a point state, using method
updateGasComp() of GazIdeal, accessible by public void updateGasComposition(Vector Vcomp) of
Corps: if the first Vcomp element is an Integer of negative value, a particular treatment is made. The
absolute humidity passed as third Vcomp element is set on the gas.

 else{//modifications gaz humides
 String task=(String)vComp.elementAt(1);
 String value=(String)vComp.elementAt(2);
 if(task.equals("setGasHum")){//sets the gas humidity
 double w=Util.lit_d(value);
 setGasHum(w);
 }
 }

The example below, from class BiomassCombustion shows how to change the composition of a dry gas
to match the moist gas whose water mole fraction is fractH2Ofuel (see previous section):
 // Shaping the Vector

6

 Vector vComp=new Vector();
 vComp.addElement(new Integer(-1));
 vComp.addElement("setGasHum");
 vComp.addElement(Util.aff_d(inlet_w));
 // Change the gas composition
 NewFuelSubstance.updateGasComposition(vComp);

DISPLAY IN SPECIFIC UNITS

To give the possibility to change the reference system, a display option in specific units was added in the
global Thermoptim settings screen. For moist gases, the flow rate shown is that of the dry gas, which is
invariant, and the enthalpy H is replaced by the specific enthalpy q '.

USAGE EXAMPLE: SATURATOR MODEL

In a humid air gas turbine, the capacity of the machine and the cycle efficiency are increased by
humidifying the air in a saturator before entering the combustion chamber. The cycle is quite complex to
optimize heat recovery, but the saturation model is relatively simple (Figure 1): water at a temperature of
about 280 °C enters the saturator, where it is contacted with a stream of hot (200 °C) and relatively dry
air leaving the compressor. A portion of the water is vaporized and used to increase the humidity of the
air coming out close to being saturated. The remaining water is recycled. It is assumed here that the
saturator is adiabatic and that water and air exit at the same temperature.

The class code is as follows:

1) we begin by getting the incoming gas composition, and we update the composition of the outlet
gas, a precaution in case the two dry gases would be different.

Figure 1: Saturator

7

2) we calculate the inlet absolute humidity with the definition formula, to avoid, given the high
temperature of gas, having to estimate the saturation conditions.

3) the dry gas flow and the inlet gas specific enthalpy are determined, using methods updatepoint()
and getPointProperties():

4) At this stage, the upstream moist gas properties are perfectly calculated. We must now determine
the saturator exit temperature, solving simultaneously:

• water balance (the flow of water consumed is equal to the product of the dry gas flow by the gas
moisture variation);

• enthalpy balance (the sum of incoming enthalpy flows (specific units for the moist gas) is equal to
the sum of outgoing enthalpy flows. Since Ts is unknown, we do a solution search by dichotomy,
using generic function Util.dicho_T(), which uses f_dicho(). The code operates as follows:

• humidity is passed as input argument, instead of the pressure, otherwise known;
• we first calculate the enthalpy heau (Ts) of water at the outlet;
• we change the gas outlet temperature, then its moisture from the value read on the screen, and we get

the values of its absolute humidity and specific enthalpy;
• we calculate the flow of water left (although we should do a test to make sure it remains positive);
• we write that the enthalpy lost by the water ends up in the air, and calculate residue diff;
• temperature Ts is determined when diff = 0.

5) Ts being determined, we change the composition of moist gas at the outlet

8

6) Consistency checks
Using the values that appear on the diagram of Figure 1.3.1, we can build the apparent saturator balance:
 kW
total inlet enthalpy flow 65,012
total output enthalpy flow 22,570
apparent discrepancy 42,443
difference per kg/s of water
consumed Leau = 2,547

Everything happens as if 42.4 MW of heat disappeared but, as shown in the last row of the table, this
value corresponds exactly to the enthalpy of vaporization of water in the moist gas, which is not
recognized in the values displayed by Thermoptim given the conventions adopted for ideal gases (zero
enthalpy at 25 °C and 1 bar).

Obviously, if we sufficiently cooled exhaust gas for the water they contain to condense, this enthalpy
would appear again (with the addition of the water formed in the combustion chamber).

9

APPENDIX: PROJECT METHODS ACCESSIBLE FROM THE EXTERNAL CLASSES

The Project method updatePoint() allows one to programmatically change the state of a point and
recalculate it, including its moist properties.

public void updatePoint(Vector properties){
 String nomPoint=(String)properties.elementAt(0);
 PointCorps point=getPoint(nomPoint);
 if(point!=null){
 String test=(String)properties.elementAt(1);
 boolean updateT=Util.lit_b(test);
 String value=(String)properties.elementAt(2);
 double T=Util.lit_d(value);
 test=(String)properties.elementAt(3);
 boolean updateP=Util.lit_b(test);
 value=(String)properties.elementAt(4);
 double P=Util.lit_d(value);
 test=(String)properties.elementAt(5);
 boolean updateX=Util.lit_b(test);
 value=(String)properties.elementAt(6);
 double x=Util.lit_d(value);

 //pour mélanges humides for moist mixtures
 if(properties.size()>7){
 test=(String)properties.elementAt(7);
 boolean melHum=Util.lit_b(test);

 if(!melHum){//calculs à effectuer dans le cas général
 if(updateT)point.setT(T);
 if(updateP)point.setP(P);
 if(updateX)point.setX(x);
 point.CalculeUnPoint();
 }
 else{//calculs humides

 String task=(String)properties.elementAt(8);
 value=(String)properties.elementAt(9);

 if(task.equals("setW and calculate all")){//sets w and calculates moist properties
 double w=Util.lit_d(value);
 point.setW(w);
 point.calcHum();
 }
 if(task.equals("setW and calculate q'")){//sets w and calculates moist properties except t'
 double w=Util.lit_d(value);
 point.setW(w);
 point.calcQprime();
 }

 if(task.equals("setEpsi")){//sets epsilon
 double epsi=Util.lit_d(value);
 point.setEpsi(epsi);
 point.impHumRel();
 }

 if(task.equals("setEpsi and calculate")){//sets epsilon and calculates moist properties
 double epsi=Util.lit_d(value);
 point.setEpsi(epsi);
 point.impHumRel();
 point.calcQprime();
 }
 if(task.equals("calcWsat")){//calculates saturation properties and moist properties except t'

10

 T=Util.lit_d(value);
 double wsat=point.wsat(T);
 point.setW(wsat);
 point.calcQprime();
 }
 if(task.equals("modHum")){//modifies the gas composition
 point.modGasHum(false);
 }
 }
 }
 else{//calculs à effectuer dans le cas général
 if(updateT)point.setT(T);
 if(updateP)point.setP(P);
 if(updateX)point.setX(x);
 point.CalculeUnPoint();
 }
 }

The method getProperties() is then used to retrieve specific values, knowing that the method
getPointProperties("nomPoint") of ExtProcess can load these values directly in the following two:
Wpoint for absolute humidity w, Epsipoint for relative humidity ε, Qprimepoint for the specific enthalpy
q', Tprimepoint for the adiabatic temperature t' (° C), Trpoint to the dew point tr (° C), VPrimepoint for
the specific volume vs, Condpoint for condensate, M_secpoint and for the molar mass of dry gas

 public Vector getProperties(String[] args){ (partiel)

else if(type.equals("point")){
 PointCorps pt=getPoint(nomType);
 if(pt!=null){
 vProp.addElement(pt.lecorps);//Substance
 vProp.addElement(pt.lecorps.getNom());//Substance name
 vProp.addElement(new Double(pt.getT()));//Temperature
 vProp.addElement(new Double(pt.getP()));//Pressure
 vProp.addElement(new Double(pt.getXx()));//Quality
 vProp.addElement(new Double(pt.getV()));//Volume
 vProp.addElement(new Double(pt.getU()));//Internal energy
 vProp.addElement(new Double(pt.getH()));//Enthalpy
 vProp.addElement(new Double(pt.getS()));//Entropy
 String setTsat="set_Tsat="+Util.aff_b(pt.JCheckSetTsat.isSelected());
 vProp.addElement(setTsat);//setTsat
 vProp.addElement(new Double(pt.dTsat_value.getValue()));//DTsat
 String setpsat="set_psat="+Util.aff_b(pt.JCheckSetPsat.isSelected());
 vProp.addElement(setpsat);//setpsat

 //wet gas values
 vProp.addElement(new Double(pt.w_value.getValue()));//specific humidity
 vProp.addElement(new Double(pt.epsi_value.getValue()));//relative humidity
 vProp.addElement(new Double(pt.qprime_value.getValue()));//specific enthalpy
 vProp.addElement(new Double(pt.tprime_value.getValue()));//adiabatic temperature
 vProp.addElement(new Double(pt.tr_value.getValue()));//dew point temperature
 vProp.addElement(new Double(pt.v_spec_value.getValue()));//specific volume
 vProp.addElement(new Double(pt.cond_value.getValue()));//condensates
 vProp.addElement(new Double(pt.lecorps.M_sec));//Dry gas molar mass
 }

