
Turbojet driver R. Gicquel, May 2006

Turbojet driver

This note presents a brief documentation of the external class Thrust which is used as a driver model of single-
flow turbojet.

A driver can coordinate recalculation of a project Thermoptim under special rules. For our model, which is
presented in the form of guidance pages for practical work on the turbojet, the driver can coordinate updates to
the diffuser, the nozzle and the compression ratio in the whole project, to calculate the values of specific thrust
and consumption per unit of thrust, which are not provided directly by Thermoptim, and perform sensitivity
studies by saving the results to a file. Operating in this way, it greatly facilitates the use of the model.

As explained in details in Volume 3 of the reference manual, there are two ways to control Thermoptim: either
totally from an external application that instantiates the software and sets the parameters, or partially, for a given
project. It is in this latter context that we are.

In this case, we associate a specific management class to the model, and this class is instantiated when loading
the project. We must first make an external class for it to be loaded into Thermoptim at launch. Once the project
is open, the selection of the driver class associated with it is done through item "Driver screen" of menu Special
of the simulator, as described at the end of this note. When writing the project file, the name of the driver class is
saved so it can be instantiated during a subsequent loading of the project.

Brief recall of the features of the model to drive

Figure 1 shows a synoptic view of the turbojet model that is to be controlled. It involves an inlet diffuser for
creating a dynamic pressure at the compressor inlet when the aircraft is in flight, a gas generator comprising a
compressor, a combustion chamber and turbine, and finally a nozzle which propels the aircraft.

To calculate an operating point, we must operate as follows:

Figure 1: Synoptic view of the turbojet in flight

2

- Enter in the diffuser screen values of external conditions, that is to say, the aircraft speed (m/s), pressure and
ambient temperature
- Enter in the nozzle screen the value of ambient pressure
- Set the compression ratio
- Enter in the combustion screen the turbine inlet temperature
- Recalculate the entire project with this setup
- Get in the screens of the diffuser and the nozzle the values of aircraft C0 and exhaust gas C5 speeds and flows

sucked m0
· and rejected m5

· to calculate the thrust and specific consumption per unit of thrust as shown below

The expression of the thrust is F = m0
· C0 - m5

· C5, and the specific thrust is F/m0
· .

The mass flow of fuel is mc
· = m5

· - m0
· , and consumption per unit thrust is mc

· /F.

Such a sequence of operations is tedious to repeat when you want to do sensitivity studies, and so contains
errors. The completion of a driver is perfectly justified in this case.

Presentation of the external class

The driver class is an extension of extThopt.ExtPilot, which derives from rg.thopt.PilotFrame. Figure 2 shows a
screen for the driver, with above the definition of the conditions outside the aircraft, in the middle a field to enter
a value of the compression ratio to perform a single calculation, and in the bottom entry of compression ratio
bounds to perform several calculations (10 in this case) and save the results.

We will not present here
the construction of the
GUI, which poses no
particular problem and
whose code is entirely
conventional.
The sequence of
initialization and
calculation is as follows:

1) we look for instances of
external classes brought
into play. Classes Diffuser
and Nozzle were declared
globally, Nozzle as an
array of dimension 2 so
that the code can be easily
modified to serve as a
driver in a turbofan. A
consistency check is done
on the number of instances
of classes. It could be
improved.

Figure 2: Driver for the jet engine

3

2) other initializations call methods getProject() and proj.getEditorComponentList() presented in Volume 3 of
the reference manual, which provide the reference of the project (proj) and the list of components in the diagram
editor (method setupProject() is presented above).

4

3) initialization and calculation for a single compression ratio (the code to perform the simulation for 10
compression ratios is very similar, with the added backup of the results in a file). Warning: the new setting of the
compression is done by modifying the pressure downstream of the point, which requires that the compression is
carried out with a ratio "calculated" and not "set" as in the project without a driver.

 Loading the Driver

To load the driver, select item "Driver frame" of menu "Special" of the simulator. A combo then offers a list of
available drivers (Figure 3). Select the one you want to load (here "thrust") and validate.

When a driver is already loaded, item "Driver frame" of menu "Special" of the simulator opens the screen in
Figure 4, which allows you to return to the driver loaded (line with its name), to select another, or delete the
existing one without replacing it. Only one driver may be associated with a project.

5

Figure 3: Selection of the driver

Figure 4: Removing the driver

