User Guide

of TEP Lib

fluid thermodynamic properties server

coupled with Thermoptim

A Java tool for predicting the thermodynamic properties of fluids has been created from the libraries for calculating the thermodynamic properties of mixtures of the Laboratory of Thermodynamics of phase equilibria of the Ecole des Mines de Paris (Mines ParisTech). This tool has been coupled with the Thermoptim software for simulation of energy systems by R. Gicquel and B. Liu.

This library called TEP lib is composed of a set of modules that determine the equilibrium between different phases of fluid mixtures or pure substances and quickly calculate the thermodynamic properties most required in the simulation of energy systems.

This manual is intended to document the program:

- Explicit models implemented and facilitate future improvements
- Explain how the libraries can be used with Thermoptim

Only the section on pure substances is currently drafted, the mixture modules still being under development.

In what follows, we speak of fluid system to characterize the family of mixtures that can be generated by varying the overall composition, based on a set of pure components. A mixture is defined as a system whose overall composition is set. Obviously, the composition of the mixture varies in the area of liquid-vapor equilibrium.

1. Models implemented

Fluid models implemented are of the "cubic equation of state" type. They have the advantage that they can be solved analytically without using complex numerical methods. This significantly reduces the computation time.

The cubic equations implemented are:

- van der Waals (vdW) model

$$P = \frac{RT}{v-b} - \frac{a}{v^2}$$

$$27 R^2 T^2$$

$$a = \frac{1}{64} - \frac{1}{P_c}$$

$$b = \frac{1}{8} \frac{RT_c}{P_c}$$
$$Z_c = \frac{P_c v_c}{RT_c} = 0.375$$

- Soave-Redlich-Kwong (SRK) model

$$P = \frac{RT}{v-b} - \frac{a(T)}{(v+b)v}$$
$$a = \Omega_a \frac{R^2 T_c^2}{P_c} \quad avec \ \Omega_a = 0.42748$$
$$b = \Omega_b \frac{RT_c}{P_c} \quad avec \ \Omega_b = 0.086640$$
$$Zc = \frac{P_c v_c}{RT_c} = \frac{1}{3}$$

- Peng-Robinson (PR) model

$$P = \frac{RT}{v - b} - \frac{a(T)}{v + 2bv - b^2}$$
$$a = \Omega_a \frac{R^2 T_c^2}{P_c} \quad avec \ \Omega_a = 0.457240$$
$$b = \Omega_b \frac{RT_c}{P_c} \quad avec \ \Omega_b = 0.07780$$
$$Zc = \frac{P_c v_c}{RT_c} = 0.3074$$

- Patel-Téjà (PT) model

$$P = \frac{RT}{v - b} - \frac{a(T)}{v + (b + c)v - cb}$$
$$a = \Omega_a \frac{R^2 T_c^2}{P_c}$$
$$b = \Omega_b \frac{RT_c}{P_c}$$
$$c = \Omega_c \frac{RT_c}{P_c}$$

Values of Ω_a , Ω_b , Ω_c are calculated from the following system of equations when Zc is known:

$$\begin{cases} u\Omega_b = 1 + \Omega_b - 3Z_c \\ \Omega_b^3 + [(1 - 3Z_c) + (u + w)]\Omega_b^2 + 3Z_c^2\Omega_b - Z_c^3 = 0 \\ \Omega_a = 1 - 3Z_c(1 - Z_c) + 3(1 - 2Zc)\Omega_b + [2 - (u + w)]\Omega_b^2 \end{cases}$$

The $\alpha(T)$ functions implemented correspond to the cubic models described above

$$a(T) = a_c \alpha(T)$$
$$a_c = \Omega_a \frac{R^2 T_c^2}{P_c}$$

You can choose the functions α from the following:

- generalized α (SRK, PR and PT):

$$\alpha(T) = [1 + m(1 - T_r^{0.5})]^2$$
SRK m = 0.47830 + 1.6337\omega - 0.3170\omega^2 + 0.760\omega^3
PR m = 0.374640 + 1.542260\omega - 0.26992\omega^2
PT m = 0.452413 + 1.30982\omega - 0.296937\omega^2

- Mathias-Copeman α (SRK, PR et PT):

$$T_r \le 1, \alpha(T) = (1 + c_1(1 - T_r^{0.5}) + c_2(1 - T_r^{0.5})^2 + c_3(1 - T_r^{0.5})^3)^2$$
$$T_r > 1, \alpha(T) = \left(1 + c_1(1 - T_r^{0.5})\right)^2$$

$$c_1, c_2, c_3$$
 are determined experimentally.

The α functions of Stryjeck / Vera (SRK, PR and PT), Daridon (SRK, PR) and Twu et al. are also available in the program. However, these modules are still being tested.

Calculations of state functions, enthalpy and entropy, are made by:

PR

PT

$$(h - h^{0})_{T,P} = \frac{a(T) - a'(T)T}{b(r_{1} - r_{2})} \ln\left(\frac{v - br_{1}}{v - br_{2}}\right) + Pv - RT$$

$$(s - s^{0})_{T,P} = R \ln\left(\frac{Pv - Pb}{RT}\right) - \frac{a'(T)}{b(r_{1} - r_{2})} \ln\left(\frac{v - br_{1}}{v - br_{2}}\right)$$

$$r_{1} = \frac{-u + \sqrt{u^{2} - 4w}}{2} \quad et \quad r_{2} = \frac{-u - \sqrt{u^{2} - 4w}}{2}$$

$$\boxed{\text{Equation of state}} \quad u \quad w$$

$$\boxed{vdW} \quad 0 \quad 0$$

$$\boxed{\text{SRK}} \quad 1 \quad 0$$

2

l+c/b

-1

c/b

 h^0 and s^0 are the enthalpy and entropy of the fluid considered ideal. These ideal terms are calculated through the specific heat correlations C_p at can take different forms in different databases.

Polynomial form (by default in Thermoptim):

$$C_p = A + BT + CT^2 + DT^3 + ET^4 + \frac{G}{T^2} + \frac{K}{T}$$

Form in the DIPPR database:

$$C_p = A + B\left(\frac{\frac{C}{T}}{\sinh\left(\frac{C}{T}\right)}\right)^2 + D\left(\frac{\frac{E}{T}}{\cosh\left(\frac{E}{T}\right)}\right)^2$$

Other forms of correlations are also available. The choice of the correlation of Cp is necessary for the construction of. mel files containing the input data for models (see 3.Adding a pure substance).

The pressure and saturation temperature are calculated by seeking equal liquid and vapor fugacities. An iterative algorithm is used for that. Initialization of the desired size can be made by the following correlations:

- Saturation pressure (depending on the reduced temperature T_r):
 - Exponential formulation (Thermoptim) :

$$P_0 = e^{\mathbf{A} + \frac{\mathbf{B}}{\mathbf{T}_r} + C \ln(T_r) + D T_r^E}$$

o Lee-Kesler formulation:

$$P_0 = P_c \exp(5.92714 - \frac{6.09648}{T_r} - 1.28862 \ln(T_r) + 0.169347 T_r^6 + \omega (15.2518) - \frac{15.6875}{T_r} - 13.4721 \ln(T_r) + 0.43577 T_r^6))$$

- Saturation temperature (depending on the pressure *P*)
 - o Logarithmic formulation in Thermoptim :

$$T_0 = A + B \ln(P) + C (\ln(P))^2 + D (\ln(P))^3 + E (\ln(P))^4$$

2. Operation of the server with Thermoptim

The use of the fluid thermodynamic properties server requires that the input data are given in a .mel file. We will see in Section 3 how to create these .mel files.

We start by creating a component. In this example, a point was chosen for simplicity. We choose here in particular the name of the external substance we wish to use.

🛓 Di	iagran	edito	r for Thermoptim								
<u>F</u> ile	<u>E</u> dit	Speci	al Components Help								
k	A	٠		≻≺₽	·E- ≻ E	E	ŧ				
			🛓 process-point :		×						
			General								
			process-point								
			process point								
			component name	1							
			substance name	TestFluid							
			flow rate	1							
			point name								
			point numo	<u>y</u>							
			Apply	Cancel							
					 _						

Choice of the external substance:

Once the component is created in Thermoptim, double-click it to display the process screen, then click "display" to open the upstream or downstream point. The window for calculating a point opens.

	🐇 Point calculati	ion screen			- 0 ×
	 Point calculati project point 1 substance 7 Open system (P (bar) 1 	estFluid estFluid external mixture T,P,h) Closed sys	display tem (T,v,u)	observed inf Duplicate Suppress Water vapor/gas mix @ 1	Save Close tures
T (°C) 26,85 P (bar) 1 h (kJkg) 2 quality 1	set P contr	olled h (kJ s (kJ	kg) 2,00 kg/K) 0,16 ex	0466182 0 I 5839752 0 I sergy (kJ/kg) -46,51	P and h known P and s known 91
outlet point Pinch method fluid 1 dispts T (*C) 26,85 P (bar) 1 h (KJJkg) 2 Quality 1 Set m ΔH and modify the outlet point.	T (°C) T (K) 30 u (KJ/kg) s (KJ/kg/K) V (m3/kg) Cp (J/kg/K) Cv (J/kg/K) gamma	26,85 1,4304462 0,16839752 0,861323427 1 002,38 715,27 1,40139			Calculate

Check the "external mixture" control under the name of the substance chosen by "FluideTest1" and then hit enter.

🕌 Point calcul	ation screen											
project					obser	ved	<	>				
point	1					link	(S					
substance	TestFluid		displ	ау	Duplicate	e	Save					
	🖌 external i	mixture			Suppres	Close						
Open syster	Open system (T,P,h) Closed system (T,v,u) Water vapor/gas mixtures											
P (bar)	1					۹ ک	^o and T	known				
set P co	ntrolled	h (kJ	/kg)	2,00	466182	_ F	^o and h	known				
		s (kJ	/kg/K)	0,16	839752	O P and s known						
				ex	ergy (kJ/kg)	-46,51	91					
T (°C)	26,85											

The substance loading window appears with LiBr-H2O system as default. Choose the system in the drop down menu at the bottom right of the window. Then click "load the mixture". It is also possible to save the name of the substance chosen for later use by clicking "Save". But the name of the new substance will only be taken into account after restarting Thermoptim. The data on the substance selected are then loaded.

<u></u>	mo	lar fr	mı acti	xti ion	ire	edi	itoi	r: T	es	tFlu	ia /				-11/21	Uex	terna	al mu	ktur	2/5	JILWa		'g /	Sys			
			mm	one	nt r	am	e							mola	ar frs	action						mass	fra	ction	1		
thiu	n br	omid	e	0110						-)			molo		401101			0			11000		onor			
vate	er .		-								;;								0								
									Lin	hee	ditio	n/ Tr	ma>	<i 0="" :="" td="" <=""><td>K/ Tr</td><td>mini :</td><td>0 K/ I</td><td>Pmaxi</td><td>i : 0 t</td><td>par</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></i>	K/ Tr	mini :	0 K/ I	Pmaxi	i : 0 t	par							
le		Save			Sa	IVe	as		Lin		diti or Loa(n/Tr d the	ma× e m	ki : O l	K/ Tr ≘	mini : rg /	0 K/ I Li Br-	Pmaxi H2O	i : O t	bar	_		•		Са	ancel	1
le		Bave			Sa	ive	as	••••	Lin		diti or	n/ Tr d the	ma× e m	ki : O I	K/ Tr ₽	mini : rg / TEF TEF	0 K/ I LiBr- _lib / _lib /	Pmaxi H2O prop: Hg	i : O t	par			▼		Ca	ance	1
le	<	3ave			Sa	ve	as	•••	Lir		diti or	n/ Tr d the	ma» e m	ki : O l	K/ Tr	mini : rg / TEF TEF TEF	0 К/ I _liBr- _lib / _lib / _lib /	Pmaxi H2O Propa Hg R365	i : O t ane	old	_		▼		Ca	ance	
le	ę	Save			Sa	ive	as		Lir		diti or	n/ Tr	ma>	ki : O I	K/Tr ≘	mini : rg / TEF TEF TEF TEF	0 К/ I Li Br- _]ib / _]ib / _]ib / _]ib /	Pmaxi H2O Propa Hg R365 R365	i : 0 t ane imfo-	old					Ca	ance	
e	ş	Save			Sa	ve	as		Lir		diti or	n/ Tr d the	ma× e m	ki : O I	K/Tr ≥	mini : TEF TEF TEF TEF	0 K/ I 	Pmaxi H2O Prop: Hg R365 R365	i : O t ane imfo- imfo fa	old					Ca	ance	
e	ŝ	Save			Sa	ve	as		Lir		dition	n/ Tr d the	ma>	ki : O I	K/ Tr	mini : TEF TEF TEF TEF TEF	0 К/ I _lib / _lib / _lib / _lib / _lib /	Pmaxi H2O Propa R365 R365 R245	i : O t ane imfo- imfo fa iea	old	_				Ca	ance	
e	2	3ave			Sa	ve	as				dition Loa	n/ Tr	ma>	ki : O I	K/ Tr	mini : TEF TEF TEF TEF TEF	0 K/ I LiBr- _lib / _lib / _lib / _lib / _lib / _lib /	Pmaxi H2O Prop: R365 R365 R245 R236	i : O t ane imfo fa iea ne	old					Ca	ance	

For a pure substance, the mole and mass fractions are of course worth 1. For a mixture, enter the molar composition before saving the external substance.

🕌 Point calcul	atior	ı screen							<u>_ 0 ×</u>	l
project						obs	erved	<	>	
point	1						linł	(\$		
substance	Tes	tFluid		displ	ау	Duplica	ite		Save	
		external	l mixture			Suppre	SS		Close	
Open syster	n (T,I	P,h) (Closed sys	stem (T	,v,u)	Water vapo	r/gas mix	tures		
P (bar)	1						۱۵	P and T	known	
🔄 set P co	ntrol	led	h (k.	/kg)	-195	,41875379	_	P and h	known	
			s (k.	/kg/K)	0,02	489616	0	P and s	known	
					ex	ergy (kJ/kg)	-202,5	926		Calculation options
T (°C)		40,0479	95832		🖲 und	constrained			i	displayed when the
T (K)	300			1	🔾 set	the saturation	n pressur	e	4	substance is correctly
quality		0			🔾 set	the saturation	n tempera	ature		louded
u (kJ/kg)		-196,18	3334135		. – .					
s (kJ/kg/K)		0,02489	9616					Calcula	te	
V (m3/kg)		0,00076	64587554							

The previous calculation options must appear in the point calculation window.

To calculate the thermodynamic properties of fluids, it is sufficient to define the two known quantities: (P, T), (P, h) or (P, s). Then enter the corresponding values. For pressure and saturation temperature, check "set the saturation pressure" or "set the saturation temperature" instead of "unconstrained", after entering the value of the quality.

3. Adding a pure substance

Although the use of the fluid thermodynamic properties server is simple and fairly intuitive, the preparation of files containing the input data of the fluid is much longer and complex.

Each pure substance has a .mel file stored in the $\ mixtures \ TEPlib_MEL$ folder, and must be declared in the TEPlib.mix file at the root of the "mixtures" folder.

The TEPlib.mix file contains the list of proposed systems. Its standard format is:

Each line includes:

- The name of the system as it will appear in the Thermoptim screens (e.g. butane-propane)

- The definition file of the mixture, in the format of the properties server (e.g. butanePropane.mel)

- The number of components

- Component names as they appear on the Thermoptim screens

- The molar mass, the pressure and critical temperature, maximum and minimum temperatures for the fluid and the pressure and the temperature reference values (where h = u = s = 0)

It is basically through the mel mixture definition file that the system is initialized, Thermoptim merely changes the composition and state variables. Examples of mel files are provided in the archive containing the executables.

The .mel file structure is:

	u0	0							
23	nbexp	21							
	exp	T(K)	Psat(Pa)	Vsat_L(m3/mc	Hvap(J/mol)	$\overline{}$			
	exp	260	2415604.7	4.40567E-05	11733				
	exp	262	2559602.9	4.44998E-05	11519				
	exp	264	2709804.7	4.4964E-05	11299				
	exp	266	2866379.3	4.54504E-05	11073				
	exp	268	3029499.6	4.59622E-05	10838				
	exp	270	3199342.2	4.6503E-05	10595				
	exp	272	3376088.6	4.70765E-05	10343				
	exp	274	3559925.2	4.76826E-05	10080				
	exp	276	3751045	4.83325E-05	9807			ι.	
	exp	278	3949648.3	4.90244E-05	9522				24
	exp	280	4155944.9	4.97711E-05	9224			\bigwedge	27
	exp	282	4370155.9	5.05766E-05	8911			!	
	exp	284	4592516.8	5.14536E-05	8581				
	exp	286	4823281.9	5.24109E-05	8231				
	exp	288	5062729.4	5.34702E-05	7860				
	exp	290	5311169.7	5.46538E-05	7462				
	exp	292	5568957.1	5.5991E-05	7030				
	exp	294	5836508.5	5.75341E-05	6557				
	exp	296	6114333.1	5.93613E-05	6027				
	exp	298	6403087.4	6.16181E-05	5416				
	exp	300	6703688.9	6.46037E-05	4675				

[component 2]

This file contains the following information (in order of appearance):

- 1. Number of components: always 1 for pure substances
- 2. Equation of state chosen
- 3. Alpha function chosen *
- 4. Name of the fluid
- 5. Critical temperature of the fluid
- 6. Critical pressure of the fluid
- 7. Critical volume of the fluid
- 8. Molecular weight
- 9. Acentric factor
- 10. Reference temperature
- 11. Reference pressure
- 12. Boiling point
- 13. Minimum operating temperature
- 14. Maximum operating temperature
- 15. Maximum operating pressure
- 16. Three coefficients C1, C2, C3 for the Mathias-Copeman alpha function *
- 17. Correlation of Cp *
- 18. Correlation used to initialize the saturation pressure *
- 19. Correlation used to initialize the saturation temperature *
- 20. Reference enthalpy
- 21. Reference entropy
- 22. Internal energy reference
- 23. Number of experimental values*

24. Experimental values: temperature, saturation pressure, liquid saturation volume, latent heat of vaporization *

This writing must be strictly observed.

When writing the .mel file, we must take particular care data with a star. The explanations are as follows:

8

17

For the alpha function chosen, it is necessary to take the one corresponding to the equation of state selected in the previous line. If the Mathias-Copeman alpha function is chosen for prediction, one must have either parameter values C1, C2, C3 or reliable experimental data to adjust the 3 Mathias-Copeman parameters.

For the calculation of Cp, we have seen that there are several types of correlations. The current program allows for systematic calculations for the polynomial and DIPPR formulations. The first integer of the line, between 0 and 2, allows the choice of the correlation:

- 1 for the polynomial correlation

- 2 for the DIPPR correlation
- 0 for other forms of correlation

If you want to implement other more complex correlations, you then have to change the code of the fluids thermodynamic properties server. The classes concerned are, "fonctionCp (int, double)" and "numeroCas."

Depending on the correlation chosen, the coefficients A, B, C, D, E, F, G, K are different. The molar unit used is J/K/mol.

To initialize the saturation pressure, one can also choose the correlation used. The first integer of the line, between 0 and 1, allows you to choose respectively the method of Lee-Kesler or the exponential correlation used by default in Thermoptim (cf. 1.Models implemented).

To initialize the saturation temperature, only the logarithmic correlation is introduced (see 1.Models implemented).

The experimental data are used to adjust the values of the Mathias-Copeman alpha function. If we have some and wish to determine the parameters C1, C2 and C3 from these data, we must specify the number of experimental values at different temperatures. Then enter in the following order: temperature, saturation pressure, volume of saturated liquid and latent heat of vaporization. It is important to note that: if the number of experimental data is not 0, then the parameters C1, C2, C3 will be calculated from the experimental data. The values of C1, C2, C3 written in the .mel file a few lines later are not used by the model in this case.

References :

[1] C. Coquelet. Etudes des fluides frigorigènes, mesures et modélisation. PhD thesis, Ecole des Mines de Paris, 2003.

[2] R. Gicquel, Thermoptim reference manual. 2010

[3] R. Gicquel, Energy Systems, a new approach to Engineering Thermodynamics. CRC Press, 2011.

[4] B.I. Lee M.G. Kesler. A generalized thermodynamic correlation based on three parameter corresponding states. AIChE Journal, 1975.

[5] A. Baba-Ahmed, C. Coquelet, A Client-Server software for experimental data managing and treatment, CEP/TEP, 2003

[6] ProSim, Component Plus, DIPPR database from AICHE, 2001

[7]E.W.Lemmon, M.L.Huber, M.O. McLinden, Reference Fluid Thermodynamic and Transport Properties—Refprop user's guide, NIST, 2007

23-24

18-19