This session is the second part of an introductory course on heat integration or pinch method.
It presents in details a practical example of this method, with the heat exchanger network determination.
If you are not yet familiar with the basic concepts of heat integration (pinch, composites, algorithm for minimizing the pinch), we suggest you should first study session IT1En.
(Session realized on 01/09/11 by Renaud Gicquel)Stream 1 | 220 – 40 °C | 1,800 kW |
---|---|---|
Stream 2 | 320 – 200 °C | 2,400 kW |
Stream 3 | 140 – 40 °C | 800 kW |
Stream 4 | 100 °C | 1,200 kW |
Boiler | 600 °C | 1,900 kW |
Stream 5 | 40 – 320 °C | 6,000 kW |
---|---|---|
Stream 6 | 220 °C | 600 kW |
1) shift minimal and maximal temperatures by ΔTmin/2
stream | m C_{p} | T_{s} | T_{t} | H |
---|---|---|---|---|
(kW/K) | (°C) | (°C) | (kW) | |
1 | 10 | 40 | 220 | 1,800 |
2 | 20 | 200 | 320 | 2,400 |
3 | 8 | 40 | 140 | 800 |
4 | 1200 | 100 | 101 | 1,200 |
5 | 21 | 40 | 320 | 6,000 |
6 | 600 | 220 | 221 | 600 |
stream | m C_{p} | type | T_{inf} | T_{sup} | Δh |
---|---|---|---|---|---|
(kW/K) | (°C) | (°C) | (kW) | ||
1 | 10 | chaud | 35 | 215 | 1,800 |
2 | 20 | chaud | 195 | 315 | 2,400 |
3 | 8 | chaud | 35 | 135 | 800 |
4 | 1200 | chaud | 95 | 96 | 1,200 |
5 | 21 | froid | 45 | 325 | 6,000 |
6 | 600 | froid | 225 | 226 | 600 |
1) shift minimal and maximal temperatures by ΔTmin/2
interval | T_{i} | T_{i + 1} | streams | T_{i} - T_{i + 1} | Σ(m C_{p}) | ΔH_{bd} |
---|---|---|---|---|---|---|
(°C) | (°C) | (K) | (kW) | (kW) | ||
1 | 325 | 315 | *5* | 10 | 21,43 | 214 |
2 | 315 | 226 | *5,2* | 89 | 1,43 | 127 |
3 | 226 | 225 | *5,2,6* | 1 | 601,43 | 601 |
4 | 225 | 21 | *5,2* | 10 | 1,43 | 14 |
5 | 215 | 195 | *5,2,1* | 20 | -8,57 | -171 |
6 | 195 | 135 | *5,1* | 60 | 11,43 | 686 |
7 | 135 | 96 | *5,1,3* | 39 | 3,43 | 134 |
8 | 96 | 95 | *5,1,3,4* | 1 | -1196,6 | -1197 |
9 | 95 | 45 | *5,1,3* | 50 | 3,43 | 171 |
10 | 45 | 35 | *1,3* | 10 | -18,0 | -180 |
1) shift minimal and maximal temperatures by ΔTmin/2
interval | T_{i} | T_{i + 1} | ΔHbd | sum |
---|---|---|---|---|
(°C) | (°C) | (kW) | (kW) | |
1 | 325 | 315 | 214 | -214 |
2 | 315 | 226 | 127 | -341 |
3 | 226 | 225 | 601 | -943 |
4 | 225 | 21 | 14 | -957 |
5 | 215 | 195 | -171 | -786 |
6 | 195 | 135 | 686 | -1471 |
7 | 135 | 96 | 134 | -1,605pinch |
8 | 96 | 95 | -1,197 | -409 |
9 | 95 | 45 | 171 | -580 |
10 | 45 | 35 | -180 | -400 |
1) shift minimal and maximal temperatures by ΔTmin/2
interval | T_{i} | T_{i + 1} | Δh net | 1605 |
---|---|---|---|---|
(°C) | (°C) | (kW) | ||
1 | 325 | 315 | 214 | 1391 |
2 | 315 | 226 | 127 | 1264 |
3 | 226 | 225 | 601 | 662 |
4 | 225 | 21 | 14 | 648 |
5 | 215 | 195 | -171 | 819 |
6 | 195 | 135 | 686 | 134 |
7 | 135 | 96 | 134 | 0 |
8 | 96 | 95 | -1197 | 1196 |
9 | 95 | 45 | 171 | 1025 |
10 | 45 | 35 | -180 | 1205 |
number | mCp | ΔH |
---|---|---|
(kW/K) | (kW) | |
1-10 | 600 | |
5 | 21.4 | 1,285.7 |
estimated flow rates :
m | ΔH | |
---|---|---|
(kg/s) | (kW) | |
stream 1 | 9.946 | -1,800 |
stream 2 | 19.892 | -2,400 |
stream 3 | 7.9568 | -800 |
stream 4 | 0.5317 | -1,200 |
stream 5 | 21.312 | 6,000 |
stream 6 | 0.3232 | 600 |
In this session, we have illustrated the heat integration method by treating an example proposed in 1989 by Gourlia in the Revue Générale de Thermique.
Thermoptim files of the example can be downloaded from the link below.
We now suggest that you refer to the specialized temperature, and in particular to publications of Prof. B. Linnhoff.
We recommend that you read the following synthesis:
Introduction to Pinch Technology, Copyright 1998 Linnhoff March.