TREES

Training for Renovated Energy Efficient Social housing

Intelligent Energy -Europe programme, contract n° EIE/05/110/SI2.420021

Intelligent Energy Europe

Section 2 Tools 2.1 Simplified heating load calculation

Tamas CSOKNYAI BUTE

Contents

- Objectives and principle
- Principle of heating load calculation
- Heat losses
 - Transmission losses (multi layers stuctures, air gaps, thermal bridges)
 - Ventilation losses (ACH, air tightness, heat recovery)
 - Heat losses during a period: degree hours, balance-point temperature

Heat gains

- Solar gains, shading devices
- Internal heat charges
- Thermal mass
- Conclusions

Objectives and principle

- Objective : decrease the heating energy consumption and the heat demand
- Principle : decrease of the transmission and ventilation losses, utilization of the solar gains and optimization of the equipments
- Example : "passive house labeling" in Germany, Minergie in Switzerland
- EPBD: European Energy Performance Directive on Buildings,
 - in force since January 2006
 - Energy certification
 - Regular inspection of boilers and air conditionning systems
- Tools : simplified energy balance, dynamic simulation tools (see section 2.2)
- European standards EN 832, EN ISO 13790

Heating energy balance of a building

$$\Phi_{tr} + \Phi_{vent} + \Phi_{sol} + \Phi_{int} \pm \frac{\Phi_{stored}}{T} - \left(\Phi_H - \Phi_{system \, losses}\right) = 0$$

$$\Phi_{H} = \Phi_{tr} + \Phi_{vent} - \Phi_{sol} - \Phi_{int} \pm \frac{\Phi_{stored}}{T} + \Phi_{system \, losses} = 0$$

 Φ_H Φ_{tr} Φ_{vent} Φ_{sol} Φ_{int} Φ_{stored}

 \mathcal{T}

system losses

ወ

Heating load Transmission losses Ventilation losses Solar gains Internal heat charges Variation of stored heat in function of time Losses of the heating system (distribution losses)

With other words (according to Standard EN ISO 13790)

Heating load = = heat losses – η . (solar + internal gains) + distribution losses

Heat losses

Transmission losses through the building envelope

- Exposed surfaces: facade walls, roof, ground
- Openings (windows, doors)
- Thermal bridges

Ventilation losses:

- Opening of windows
- Losses of mechanical ventilation system
- In- or exfiltration of air

Depends also on the indoor air temperature (control, zones) and the outdoor conditions (latitude, altitude) TREES

TRANSMISSION LOSSES

Transmission through multi-layer structures

Transmission losses: $\Phi_{tr} = U \cdot A \cdot (\vartheta_i - \vartheta_e)$ [W]

- U-value: Air-to-air conductance (thermal transmittance)
- R: thermal resistance of a layer
- $U = 1 / \Sigma R \qquad [W/m^2/K]$
- A: Surface of the exposed elements [m²]
- θ_i: Design indoor air temperature
- ϑ_e : Design outdoor air temperature

- Total heat transfer through a building element is a result of
 - conduction,
 - convection
 - radiation

wood polystyrene $\lambda = 0.15 \text{ W/mK}$ $\lambda = 0.04 \text{ W/mK}$ glass $\lambda = 1 W/mK$ reinforced concrete steel $\lambda = 2,1 \text{ W/mK}$ $\lambda = 50 \text{ W/mK}$

Convection+linearised radiaton

Special cases for determining U-value: Air layers

- Air gap between two materials
- Thermal resistance depends on position, width and level of ventilation
- Thermal resistance in function of the width of air gap

Non homogeneous materials, average R (usually given by the producer)

Examples :

- brick of 5 cm , R = 0.11 m².K/W
- insulating masonary blocks (bricks with holes) of
 44 cm (« Phorotherm »), R = 2.57 m2.K/W

Facades	Uf	Af	Uf . Af
► Floor	Ufl	Afl	Ufl . Afl
Roof	Ur	Ar	<u>Ur . Ar</u>
► TOTAL			Σ (U . A)

transmission heat losses :

 $\Phi_T = \Sigma (U \cdot A) \cdot (\vartheta i - \vartheta e) + windows, doors and thermal bridges$

Doors and windows

- Single glazing : U = 5.5 W/m2/K
- Double glazing : U = 3.3 W/m2/K
- + low-emissivity coating : U=1.8 W/m2/K
- + argon filling : U = 1.1 W/m2/K
- Wooden frame : U = 2.4 W/m2/K
- PVC frame : U = 1.7 W/m2/K

- Average U-value: mean value weighted with proportion of area, e.g. 75% glazing, 25% frame + losses caused by spacer
- Door : according to thickness and material (R)

Thermal bridges

- Ψ [W/mK]: Linear heat loss.Can be determined using:
- Thermal bridge catalogues
- Thermal bridge calculation tools
- Some producers of
 complete construction
 systems publish their
 usual Ψ-values in
 catalogues

Thermal bridges (examples)

TREES $\Phi = \psi \cdot L \cdot (Ti - Te) \psi$ in W/m/K

15

VENTILATION LOSSES

Calculation of ventilation losses

- Minimum ACH determined by:
 - Biological need (fresh air for breathing)
 - Required ACH for fabric protection
- 2 ways of determination of ACH:
 - Fresh air required per person : 30 m³/h,person
 - Minimal air change rate: n_{min}=0,5 h⁻¹
- Infiltrations (spontanous losses through window gaps, joints, shafts...)
- ► Ventilation losses : ACH .V . ρ .C .($\vartheta_i \vartheta_e$)
- ACH: Air change rate [h⁻¹]
- ρ : density of air, [m³/h]

C : heat capacity of air = 1000 J/kg,K

Preheating of ventilation air, heat recovery

18

Preheating in a sunspace

SOLAR GAINS

Solar radiation

► 3 parties : direct, diffuse, reflected

- Radiation global horizontal
- Radiation on different vertical orientations

Solar gains

Utilised solar gains depend on:

- Climate
- Geographical position of the site
- Orientation of glazing
- Shading objects (neighbouring buildings, trees)
- Shading coefficient of shading devices
- g-value of the glazing
- Thermal mass of the building

DESIGN VALUES OF SOLAR RADIATION DEPEND ON THE LOCATION AND ARE GIVEN BY THE STANDARDS

Shadowing devices and movable insulation

- Shadowing devices and movable insulation are of importance both in winter and summer from the points of view of reducing transmission heat losses and controlling solar penetration.
 - If the shadowing device is outside, in front of the glazing, the total solar energy transmittance can be as low as 0,1-0,4. For the same device, if it is behind of the glazing, the shading coefficient is higher: 0,4-0,7.

Sun path diagram and shadow mask calculator

50'

30'

Sun path diagram and shadow mask calculator are tools to determine the shading effect of the neighbouring objects and shading devices

INTERNAL GAINS

Internal gains

- Occupants : about 100 W / person (in function of physical activity)
- Artificial lighting
- Office equipments (computers, photocopy machines)
- Cooking
- A part is lost (e.g. hot water)

The real reduction is only a part of the internal and solar gains. Expressed with efficiency: η

η depends:

- The proportion of the gains (γ : gains Φ_g / losses Φ_L)
- The thermal mass and the time constant of the building
- Heavy building can utilise more gains than light ones

THERMAL MASS

Thermal mass

The change of the stored heat is proportionate to the change of the temperature, the mass (m) and the specific heat (C):

 $\Delta q = m^*C^*\Delta T$

- concrete : C=0.26 Wh/kg/K, 2400 kg/m3
- wood : C= 0.36 Wh/kg/K, 630 kg/m3
- polistyrene : C= 0.34 Wh/kg/K, 25 kg/m3
- glass : C= 0.5 Wh/kg/K, 2500 kg/m3

External and internal insulation, time constant

- Time constant depends on the level of thermal transmittance (H=A*U) and heat capacity τ = C / H
 - If external insulation: lower $H \rightarrow$ higher τ
 - If heavy structures: higher $C \rightarrow$ higher τ
 - If internal insulation: lower thermal mass \rightarrow lower τ
- Maximum 10 cm of the inner part of exposed structures can store heat (for 24 hours). Mass and resistance of this layer is a key issue.
- Intermittent (programmed) heating can result in energy saving because of thermal mass [REES]

HEATING LOAD CALCULATION FOR A PERIOD

Heat losses during a period

- Heat loss coefficient: losses in case of 1K temperature difference:
- $\blacktriangleright H = H_T + H_V$
- $H_T = \{\Sigma (U . A) + \Sigma (\psi . L)\}$

thermal bridges)

walls, roof, ground, windows and doors

$$H_{v} = ACH . V . \rho . C$$

$$\Phi = H . (\vartheta_{i} - \vartheta_{e})$$

Prescribed indoor air temperature for example $\vartheta_i = 20^{\circ}C$

 $\vartheta_{\rm e}$ variable during the heating season

Yearly losses = Σ monthly losses = Σ hourly losses

 $\Sigma H (20 - \vartheta_e) = H \cdot \Sigma (20 - \vartheta_e)$ TREES

Degree - hours based on 20°C

Degree - hours

- Simplification of climatic model
- ► $\Sigma (18 \vartheta_e)$ = degree hours based on ϑ_i = 18°C
- Heating not needed if T_e >= balanced point temperature, depends on climate e.g. 12 °C (internal heat gains)
- Examples for yearly degree hours:
 - Warshaw: 93 000 degree hours
 - Budapest: 72 000 degree hours
 - Paris : 58 000 degree hours
 - Nice : 32 000 degree hours
 - Athens: 34 000 degree hours
 - Copenhagen: 70 000 degree hours

Heating period

- ▶ $\theta_{ext} \leq \theta_{int} \eta_1 \cdot Q_g / (H \cdot 24)$
- ► θ_{ext} : daily average outdoor temperature
- θint : daily average indoor temperature
- ▶ $\eta_1 = a / (a+1) (\eta \text{ for } \gamma = 1)$
- Q_g : daily average gains
- H = total heat losses in W/K
- ► In case of monthly calculations: $a = 1 + \tau / 15$
- Fine constant $\tau = C / H$

Conclusions

- EPBD, Energy certification, energy label
- Links with simulation
- Normative references:
 - EN 832: Thermal performance of buildings Calculation of energy use for heating – Residential buildings
 - prEN 410: Glass in building Determination of luminous and solar characterisics of glazing
 - EN ISO 7345: Thermal insulation Physical quantities and definitions (ISO 7345:1987)
 - prEN ISO 10077-1 Windows, doors and shutters Thermal transmittance Part 1: Simplified calculation method
 - EN ISO 13786: Thermal Performance of Building components –Dynamic thermal characteristics – Calculation method
 - EN ISO 13789: Thermal Performance of Buildings Transmission heat loss coefficient – Calculation method

