TREES

Training for Renovated Energy Efficient Social housing

Intelligent Energy -Europe programme, contract n° EIE/05/110/SI2.420021

Intelligent Energy Europe

Section 1 Techniques 1.1 Insulation and Thermal Bridges

Developer: Uli Neumann (University of Kassel – CESR) Reviewer: Jan-Olof Dalenbäck (Chalmers University – EnerMa)

VIP – Vacuum Isolation Panels in Practice

- very low thermal conductivity \rightarrow space saving (factor 5 ... 10)
- application fields: floor, balcony, walls and ceilings with little scope (e. g. embrasures, dormers, connections, indoor insulation)
- high influence of thermal bridges
 in-between mounted elements
 - → very accurate mounting without any gaps indispensable
 - special fixing-solution: dowels (glass-fibre) clamp elements at edge
- durability: up to 50 years (at room temperature),
 significant reduced by permanent humidity (→ protection)
- VIPs nearly impermeable, but humidity transport via splices
- avoid punctiform pressure
- \sim cost intensive; special handling \rightarrow special-purpose solution

Contents

- Insulation materials and their features
- Insulation-systems for (Ultra)Low-Energy-Houses
- Special-purpose solutions: Vacuum-Insulation-Panels and Transparent Insulation in practice
- Thermal bridges
- Airtightness
- Exemplary solutions

Thermal Conductivity of Insulation Materials

Features of Synthetic Insulation Materials

Insulation Material	Thermal conductivity W / (m•K)	Density Kg / m³	Material class	Capillar Activity*	Dehumidi- fication*	Application	
Rockwool, Glass wool	0.035 – 0.040 0.035 – 0.050	20-200	A1-B2	no	-	roof, ceiling, wall, floor	
Mineral foam	0.045	115	A2	no	hydrophobic treated	wall	
Polystyrene (expanded) EPS, Graphite modified	0.035-0.040 0.032	10-60	B1	no	-	roof, ceiling, wall, floor	
Polystyrene (extruded)	0.035-0.040	20-60	B1	no	- (closed cellular)	flat roof, ceiling, cellar	
Polyurethane (PUR)	0.025-0.040	15-80	B1/ B2 (foil clad)	no	- (closed cellular)	flat roof, ceiling, cellar	
Nano-structured silicas, aerogels	0.015-0.025	A1			core material for VIPs		
Evacuated Insulations Vacuum Insulation Panels (VIPs)	<i>(0.002)</i> 0.008	150-300	A2-B1	no	-	roof, ceiling, wall, floor	

* see text

Features of Natural Insulation Materials

Insulation Material	Thermal conductivity W / (m•K)	Density kg / m³	Material class	Capillar Activity*	Dehumidi- fication*	Application	
Cellulose (fluffs) (slabs)	0.040-0.045	30-80 (F) 60-90 (S)	B2		+	roof, ceiling, wall, floor	
Cork (expanded shred)* (slabs)	0.050 (shr) 0.040-0.045 (S)	75-85 (shr) 110-120 (S)	B2			excavation fill*, rf, cl, wl, fl (S)	
Wood fibre (loose) (slabs)	0.040 (L) 0.040-0.052 (S)	30-40 (L) 150-270 (S)			++ (S)	rf, cl, wl, fl	
Wood wool (mineral bound slabs)	0.065-0.090	330-500	B1			only for boarding; plaster base	
Coco fibre	0.045	.045 70-80 B2		yes	++	floor, stuff wool	
Flax	0.040 Ca. 30 B2			++	rf, cl, wl, fl		
Hemp (loose, mat)	0.050-0.055 (L) 0.040-0.050 (M)	40-60 (L) 20-45 (M)	B2 ++		rf, cl, wl, fl		
Perlite (fill)* (slabs)	0.050-0.055 (F) 0.055-0.060 (S)	10 <u>90</u> 165 150200 (S)	B2 (F) A2/B1/ /B2 (S)	no	0	excavation fill*, flat roof (S)	

* see text

Insulation-Systems: Bonded Thermal-Insulation-System

Figure: sto AG, D-Stühlingen

- 1 adhesion mass
- 2 insulation material (slabs)
- 3 dowelled joint
- 3 armoring mass
- 4 armoring fabric
- 5 (pre-coating)
- 6 plaster

 plaster up all around each insulation slab on the back to avoid rear-ventilation with cold air

- no plaster on butt joints
- place insulation carefully without gaps
- fill voids only with insulation material (not with plaster or mortar)
- anchorage of external elements (railings, porches etc.): uncouple thermically with mounting-elements (PUR) or impregnated gluelam

Insulation-Systems: (rear ventilated) Curtain Wall

- 1 Under-construction
- 2 Insulation material
- 3 Truss slab
- 4 Armoring mass
- 5 Armoring fabric
- 6 Plaster

- uncouple anchoring of underconstruction thermically from wall (especially in case of aluminium-structures)
- consider underconstruction in fire protection
 - place insulation carefully without gaps (if recommended: slightly oversized)
- fill voids only with insulation material
- many insulation materials require a wind seal outside
- vapour-sealed facades require a rear-ventilation

Comparison of both Insulation Systems

Bonded Thermal-Insulation System	(rear ventilated) Curtain Wall			
 high insulation-values easy to reach (single-layer up to approx. 30 cm insulation thickness) over 34 years of proved durability recycling with passable effort wide range of different applicable materials higher fire protection needs grantable with class-A-materials (e. g. lintels, high-rise buildings) very low costs in use of EPS-slabs improved noise control also feasible with EPS by modified slab-materials 	 insulation effect reduced up to 20%, due to thermal bridges of the necessary anchors → special solutions required recycling mostly by simple disassembling higher fire protection needs grantable with class-A-materials (e. g. lintels, high-rise buildings) higher construction costs very low maintenance (depending on covering material) noticeable improvement of noise control feasible 			

Arguments for High-Insulated-Constructions

- share of costs for insulation-material is very low (ca. 1/3 of total amount)
- cost-optimised insulation-thickness rises with the energy-prices
- later added insulation is in any case uneconomical
- thermal-bridge optimised constructing is easier with high insulation-thickness
- secure prevention of mildew also at intensive habitation and in critical areas (e. g. corners behind gardrobes)
- docile (or 'well tempered') cooling-down of the building in case of longer heating-omission (category temperature 18...19°C)
 - → social housing assured for a good future also in case of extreme (?) energy scenarios
 - \rightarrow 'warmth-guarantee' as marketing-advantage
- optimal thermal behaviour also in summer

Insulation Materials: Amortisation of Fabrication Energy

			Density [kg/m³]		Fabrication Energy		
	Insulation Material	Thermal Conductivity [W/(m⋅K)]		Thickness for U=0.15 W/(m²K) [cm]	[kWh/m³ Insulation Material]	[kWh/m² external wall]	Amortisation Time [months]
BTIS	Expanded Polystyrene (EPS)	0.0350.040	15	2124	600	130145	1315
	EPS, graphite modified	0.0320.035	1517	1921	600680	115145	1114
	Glass wool	0.0350.040	120	2124	7001200	145290	1429
	rockwool	0.0350.040	150	2124	530680	110140	1114
	Mineral foam	0.045	115	27	250	70	7
	Wood fibre (slabs)	0.0400.045	180	2427	6001400	145380	1437
	Cork (slabs)	0.0400.045	120	2427	65450	20120	212
Curtain Wall, timber underconstruction	Glass wool	0.0350.040	40	2427	250400	60110	611
	rockwool	0.0350.040	60	2427	210270	5075	57
	Cellulose fluffs	0.04	4060	27	4570	1520	23
	Wood fibre (loose)	0.04	100	27	300700	80190	818
	Flax	0.04	30	27	2040	510	12
	Hemp (mat)	0.0400.050	40	2733	5080	1525	23

Bonded Thermal-Insulation-Systems: Ecological Effects and Costs

VIP – Vacuum Isolation Panels and Elements

VIP-Panels:

- core: pyrogenic silica
 - protective membran
 - envelope: vacuum sealed (impervious to diffusion)
- sensor-disc for vacuum-check

VIP-Elements = Panel + Protective Layers

EPS-layers
 (Bonded Thermal Insulation System)

PUR-layers

Transparent Insulation (TI): Function and Designs

Passive-Solar Accumulating Wall

incidence angle in winter

Transparent BTIS

- 1. absorber coating
- 2. TI-capillary panel
- 3. armouring
- 4. translucid glass-mortar

incidence angle in summer

TI-Facademodule

- 1. glass cover
- 2. absorbing layer
- 3. closable air inlet
- 4. and outlet (summer)

Transparent Insulation (TI): Application Area and Benefits

- ► walls of density ≥ 1200 kg/m³
- walls without any existing insulation
- ▶ surface share of TI \leq 5 ... 10 %
- energy benefits ./. opaque thermal insulation: 80 ... 130 kWh/m²a (south surface; U_{opaque} = 0.15 W/m²K)
- higher share of TI:
 - \rightarrow decreasing specific energy benefit
 - \rightarrow risk of overheating in summer
- costs 5 times higher than opaque BTIS
- TI do not replace high efficient thermal insulation, only considered as complement

Thermal Bridges: Characterisation

- thermal bridges = areas with higher heat drain than in standard component
- \rightarrow cooling-down of inner surface
- below critical value: interior air humidity condenses in place
- humid, cool surface \rightarrow mildew
- consequences:
 - needless higher energy-losses
 - risk of component-damages caused by condensate
 - risk of health-damages caused by mildew
 - receivables of tenants; vacancy
- remedy: thermal protection raises inner surface temperature

Thermal Bridges: Examples

External Corner ('Geometrical Thermal Bridge')

Concrete Ceiling ('Material Thermal Bridge')

- outer surface > inner surface
- → higher heat-flux than in centre of wall area (standard surface)

- component with high(er) thermal conductivity pierces standard surface or insulation
- e. g. thermal conductivity
 concrete ceiling > brickwork
 - → higher heat-flux than in centre of wall area (standard surface)

Thermal Bridges: Planning

Thermal-Bridge free Building begins in Planning Office

- insulating mantle has to wrap up the heated room without interruption
- refurbishment: some thermal bridges only reduced (e. g. basement ceiling at cellar walls)
- comparison of different solutions:
 estimation of efficiency aided by software
 - catalogues of thermal bridges
 - calculation tools
- important: detail drawings of critical areas
- no craftsman can compensate a lacking concept !

Avoiding new Thermal Bridges: Plinth

REES

- standard closing-off profile made of aluminium
 (thermal conductivity 4000 times higher than insulation material)
- \rightarrow thermal bridge
- higher heat losses equivalent to 1...2 m² insulated outwall area per meter profile
 thermotechnical interpretation:
 'ground floor 1...2 m higher due to aluminium profile'

 thermical uncoupled closing-off system avoids higher heat losses and low temperatures on inner surface

Airtightness: Reasons for Airtight Buildings

- gap, 1mm width x 1m length (related to 1m²); airstream pervades construction
- U-value declined by factor 5 ! (0.3 → 1.44 W/m²K)
- airstream carries interior air humidity into construction; amount of condensate due to convection more than 100 times higher than by vapour-diffusion !
- consequences:
 - insulation largely ineffective
 - risk of grave construction damages
 - dissatisfaction of dwellers because of infiltration
 - abatement of rent, vacancy
- ventilation system with heat recovery requires airtight building-envelope

Airtightness: Respiration-Air via Leakages?

REES

- yield of airflow through leakages insufficient
- air quantity fluctuates with weather (insufficiency ... infiltration, cold draughts), do not meet the needs
- respiration air via leakages = unhygienic
- superior: planned outer-air apertures
 - ventilation system

20

Planning Airtightness: Concept of Airtightness

Determine Airtight Envelope

- course: flat towards outer air
 - in-between flats (e.g. at installation ducts)
 - airtight separation from cellar (housed staircase)
- layer: determine position of airtight layer for every component part
 - sealing of plain (e.g. inside plaster at brickwork)
 - connection in line between different partial areas
 - punctiform connections at pervasions for construction and building services
 - components with splices for mounting and closing (windows, doors,..)
- prevent pervasions and connections (e. g. building services \rightarrow installation layer)
- prevent change of airtight-layer (inside↔outside; e.g. insulation upside rafters)
- planning details (connection details)

Exemplary Solutions: Window-Mounting

- mount window from outside the exterior wall (fixing e.g. by elbow-mounting)
- airtight connection of window frame to airtight-layer of exterior wall
 - fleece cladded tape on prepared subsurface
 - later inserted with BTIS-glue
- insulation of blind frame as far as possible
- cant insulation for wider angle of view and improved incident light

Exemplary Solutions: Plinth and Basement

- insulation of basement due to cost reasons only 25 cm below terrain
- Supplemented with frost apron
- Remaining Effect of Thermal Bridge:
 + 0.86 m² outwall area per plinth meter
- Improvement: basement insulation down to ≥ 50 cm below terrain;
 + frost apron at 25 cm below terrain
- additional insulation stripe at basement walls towards basement ceiling (at inner walls too)

23

Exemplary Solutions: Attics or Sills

24

Exemplary Solutions: Projecting Ferroconcrete Balcony Slab

Thermal Bridge Losses = Additive Outwall Area / m Balcony Connection

Quality Assurance

Aim: Reaching the Targeted Energy-Standard

- draft-planning time: concepts of insulation and airtightness
- execution-planning: graphics of connection details (minding the practicability at the construction site)
- tender and allocation/contracting: pointing to particularities in execution
- defining interfaces to other crafts and performances
- specify the particular quality criteria of the construction parts
- introducing craftsmen early while executing + monitoring the construction
- coordinate the responsabilities and competences of the crafts
- adjust immediately mounting faults or wrong decisions at material choice
- result checking by means of Blower-Door + Thermography
- use check lists

